

MT8370 IoT Application Processor Datasheet

Version: 1.2 Release date: 2024-04-24

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1 Terms and Conditions. This document is subject to change without notice.

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Document Revision History

Revision	Date	Description	
0.1	2023-07-07	Initial draft	
		Removed DDR4-related information	
		Enhanced Chapter 3 Features Description and Section 5.5 Reset by providing additional	
		details	
0.2	2023-11-20	Streamlined the presentation of Section 3.6 Memory and Section 3.8 Display for	
		improving clarity and organization	
		• Modified the descriptions of Function code 1 and Function code 2 in Table 7-2 Printed	
		device reference and decoding	
1.0	2023-12-20	Official release	
		Modified "Temperature Range" to "Operating Junction Temperature" in Table 1-2	
		Ordering Information	
		Added an order# to Table 1-2 Ordering Information	
1.1	2024-03-29	• Revised "8.1Gbps" to "5.4Gbps" in Section 3.8.1.2 Features and Section 3.8.5.2 Features	
		 Revised "2 lanes" to "4 lanes" for DP_TX in Section 3.8.1.2 Features 	
		 Modified "HBR2" to "HBR3" in Section 3.8.5.2 Features 	
		Revised the descriptions of USB in Section 3.12.4.1 USB MAC Overview	
		Added junction temperature to Table 5-1 Absolute Maximum Ratings	
		• Revised "HBR3" to "HBR2" in Section 3.8.5 DisplayPort Interface (DPTX) to match the	
		DPTX speed of 5.4Gbps	
1.2	2024-04-24	• Modified the values in Table 7-1 MT8370 AV/AZA thermal operating specifications and	
		added Table 7-2 MT8370 IV/KZA thermal operating specifications to supplement	
		information	

Table of Contents

Docι	iment	Revisior	n History	2
Table	e of Co	ntents		3
	List o	of Figure	25	6
	List o	of Table	S	11
1	Intro	duction	1	
	1.1	Featu	res Overview	19
	1.2	Order	ing Information	20
2	Prefa	ace		21
	2.1	Pin Ch	naracteristics and Signal Descriptions Conventions	21
	2.2	Timin	g Conventions, Parameters, and Information	21
		2.2.1	Timing Parameters and Information	22
		2.2.2	Parameter Information	22
	2.3	Abbre	eviations	23
3	Feat	ures De	scription	
	3.1	Applic	cation Processor	
		3.1.1	Overview	
		3.1.2	Features	
		3.1.3	Block Diagram	
		3.1.4	Function Description	
		3.1.5	Register Definition	
		3.1.6	References	
	3.2	Graph	nics Accelerator	
		3.2.1	Overview	
		3.2.2	Features	
		3.2.3	Block Diagram	
	3.3	Digita	I Signal Processor	
		3.3.1	Overview	
		3.3.2	Features	
		3.3.3	Block Diagram	
		3.3.4	Function Description	
		3.3.5	Theory of Operations	
		3.3.6	Power Management	
		3.3.7	Programming Guide	
		3.3.8	Register Definition	
		3.3.9	Reference	
	3.4		cessor Unit	
		3.4.1	Overview	
		3.4.2	Features	
		3.4.3	Block Diagram	
		3.4.4	Function Description	
		3.4.5	Theory of Operations	
		3.4.6	Programming Guide	52

3.5	System	n Companion Processor (SCP)	52
	3.5.1	Introduction	52
	3.5.2	Features	52
	3.5.3	Block Diagram	53
	3.5.4	Clock Generation	55
	3.5.5	MCUSYS (RV55)	57
	3.5.6	JTAG	59
	3.5.7	Internal Bus Fabric	59
	3.5.8	Interrupt Controller	59
	3.5.9	Timer	64
	3.5.10	WDT	65
	3.5.11	Semaphore	66
	3.5.12	GPIO	66
	3.5.13	UART	67
	3.5.14	I2C and I3C	67
	3.5.15	Memory Map of SCP Subsystem	67
3.6		ry	
	3.6.1	, DRAMC Controller (DRAMC)	
	3.6.2	External Memory Interface (EMI)	
3.7	Storag	e	
	3.7.1	MMC (MultiMediaCard) and SD (Secure Digital) Controller (MSDC)	
	3.7.2	Serial NOR Flash Controller (SNFC)	
3.8	Display		
	3.8.1	Display Controller	113
	3.8.2	Display Serial Interface (DSI)	117
	3.8.3	Display Digital Parallel Interface (DPI)	
	3.8.4	Embedded DisplayPort Interface (EDPTX)	
	3.8.5	DisplayPort Interface (DPTX)	
	3.8.6	High-Definition Multimedia Interface Transmitter (HDMITX)	
3.9	Imagin	g	
	3.9.1	Camera Image Signal Processor (ISP)	
	3.9.2	Face Detection (FD)	
	3.9.3	Camera Serial Interface (CSI)	
3.10	Video.		
		Video Encoder (VENC)	
		Video Decoder (VDEC)	
3.11		· · · · · · · · · · · · · · · · · · ·	
		Overview	
		Features	
		Block Diagram	
		Function Description	
3.12		ctivity	
		Inter-Integrated Circuit (I2C) and Improved I2C (I3C)	
		Universal Asynchronous Receiver/Transmitter (UART)	
		Serial Peripheral Interface Master (SPIM)	
		· · · ·	

		3.12.4 SuperSpeed Universal Serial Bus (SSUSB)	214
		3.12.5 Ethernet Network Interface Controller (ENIC)	
		3.12.6 Peripheral Component Interconnect Express (PCIe) Controller	
		3.12.7 Keypad Scanner (Keypad)	
		3.12.8 General-purpose Input/Output (GPIO)	
		3.12.9 Pulse Width Modulation (PWM)	
	3.13	Miscellaneous	
		3.13.1 Timers and Counters	
		3.13.2 Auxiliary Analog-to-Digital Converter (AUXADC)	
		3.13.3 Thermal Control Subsystem (TCSYS)	
	3.14	Boot Flash	
	3.15	ROM Power Down Mode	
4	Ball N	Лар	
	4.1	Quadrant Pinout	
	4.2	Pin Characteristics	406
	4.3	Power Rails	445
	4.4	Reserved and Unused Pin Handling Recommendations	448
5	Electi	rical Characteristics	
	5.1	Absolute Maximum Ratings	449
		5.1.1 Storage Condition	450
	5.2	Recommended Operating Conditions	450
	5.3	DC Electrical Specifications	452
		5.3.1 PMIC_RTC32K_CK DC Specifications	452
		5.3.2 SPII2CUARTIO DC Electrical Specifications	453
		5.3.3 I2C/I2SIO DC Specifications	453
		5.3.4 I3CIO DC Specifications	453
		5.3.5 eMMCIO DC Specifications	454
		5.3.6 MSDC1IO DC Specifications	454
		5.3.7 MSDC2IO DC Specifications	455
	5.4	Power Management	455
		5.4.1 Power Sequence	455
	5.5	Reset	455
		5.5.1 Overview	455
		5.5.2 Features	455
		5.5.3 Block Diagram	456
		5.5.4 Function Description	456
		5.5.5 Reset IO Signal Descriptions	457
		5.5.6 Theory of Operation	457
		5.5.7 Programming Guide	457
		5.5.8 Register Definition	458
	5.6	DSI Specifications	458
	5.7	CSI-2 Specifications	459
6	Clock	Characteristics	460
	6.1	Maximum Performance Ratings	460
	6.2	PLL Spec	461

	6.3	Clock Squarer	.467
	6.4	Clock Signal Descriptions	.467
7	Packa	ge Information	.468
	7.1	Thermal Specifications	.468
		7.1.1 Thermal Operating Specifications	.468
	7.2	Top Marking	.468
	7.3	Mechanical Drawing	.469
8	Legal	and Support Information	.470
	8.1	Related Documents and Products	.470
	8.2	Trademarks	.470
Exhib	it 1 Te	rms and Conditions	.472

List of Figures

Figure 1-1 Functional Block Diagram	18
Figure 3-1 Block Diagram of MCUSYS	
Figure 3-2 Block Diagram and Interface of MFG	40
Figure 3-3 HiFi 5 DSP Block Diagram	42
Figure 3-4 Block Diagram and Interface of APUSYS	48
Figure 3-5 VP6 Block Diagram	49
Figure 3-6 Key Block Diagram of MDLA	51
Figure 3-7 APU Theory of Operation Construction	52
Figure 3-8 SCP Subsystem Block Diagram	55
Figure 3-9 SCP Clock Structure	<mark>56</mark>
Figure 3-10 INTC Block Diagram	59
Figure 3-11 EINT Block Diagram	63
Figure 3-12 SCP Timer Block Diagram	64
Figure 3-13 SCP Timer Interrupt Event	64
Figure 3-14 SCP WDT Block Diagram	65
Figure 3-15 Semaphore Block Diagram	66
Figure 3-16 Block Diagram of Memory System	72
Figure 3-17 DRAMSYS Clock and Low Power Structure	73
Figure 3-18 Write Operation	74
Figure 3-19 Read Operation	74
Figure 3-20 DRAM Controller Power Domain Architecture	75
Figure 3-21 LPDDR4X Basic Schematic for 2 × 2 × 16-bit	76
Figure 3-22 4-Channel EMI/LPDDR4 SDRAM Controller Top Connection	
Figure 3-23 System-level Block Diagram of MSDC	86
Figure 3-24 Single Block and Multi-block Read in PIO Mode	87
Figure 3-25 Single Block and Multi-block Write in PIO Mode	87
Figure 3-26 Single Block and Multi-block Read in DMA Mode	88
Figure 3-27 Single Block and Multi-block Write in DMA Mode	89
Figure 3-28 Voltage Switch Command	89
Figure 3-29 MSDC Tuning Flow	91
Figure 3-30 MSDC Timing Diagram (Default Speed mode)	93

Figure 3-31 MSDC Timing Diagram (High Speed mode)	94
Figure 3-32 MSDC Timing Diagram (SDR12/SDR25/SDR50/SDR104 modes)	<mark>95</mark>
Figure 3-33 MSDC Timing Diagram (DDR50 mode)	<mark>96</mark>
Figure 3-34 MSDC Timing Diagram (HS200 mode)	<mark>97</mark>
Figure 3-35 MSDC Timing Diagram (HS400 Input Mode)	<mark>98</mark>
Figure 3-36 MSDC Timing Diagram (HS400 Output Mode)	<mark>98</mark>
Figure 3-37 Block Diagram of SNFC	<mark>99</mark>
Figure 3-38 Read ID (RDID) Operation Sequence	101
Figure 3-39 Sector Erase and Block Erase Operation Sequence	102
Figure 3-40 Chip Erase Operation Sequence	103
Figure 3-41 Programming Operation Sequence	104
Figure 3-42 Read Operation Sequence	108
Figure 3-43 Quad Output Read Mode Sequence (Address Sent in the Single-bit Mode)	110
Figure 3-44 Quad I/O Read Mode Sequence (Address Sent in the 4-bit Mode)	
Figure 3-45 SNOR Timing Diagram	113
Figure 3-46 Application Position of VPPSYS inside SoC	115
Figure 3-47 Possible Application Connection of SVPP-x and WPE	115
Figure 3-48 Possible Application Connection of DVPP-x and Display Output Interfaces	116
Figure 3-49 DSI Module Block Diagram	118
Figure 3-50 Video Mode Interface Timing Legend	120
Figure 3-51 Video Mode Interface Timing: Non-burst Mode with Sync Pulses	120
Figure 3-52 Video Mode Interface Timing: Non-burst Mode with Sync Events	121
Figure 3-53 Video Mode Interface Timing: Burst Mode	121
Figure 3-54 Timing Chart of Initialization Sequence	122
Figure 3-55 Timing Chart of Power-off Sequence	123
Figure 3-56 Registers for Data Lane Timing Parameters	125
Figure 3-57 Registers for Clock Lane Timing Parameters	126
Figure 3-58 Register for BTA Timing Parameters	126
Figure 3-59 Registers for C-PHY Timing Parameters	127
Figure 3-60 Non-burst Transmission: Sync-pulse Mode	128
Figure 3-61 Non-burst Transmission: Sync-event Mode	
Figure 3-62 Burst Mode Transmission	129
Figure 3-63 DSI Command Queue Instruction Format	129
Figure 3-64 D-PHY Lane Swap Mux	136
Figure 3-65 C-PHY Trio Swap Mux	137
Figure 3-66 DPI Timing Diagram	140
Figure 3-67 DPI Block Diagram	140
Figure 3-68 Programming Flow Diagram	
Figure 3-69 EDP TX Block Diagram with Other IPs	142
Figure 3-70 EDP TX Encoder Block Diagram	143
Figure 3-71 DP TX Transmitter Block Diagram	
Figure 3-72 DP TX AUX Diagram	
Figure 3-73 DPCD Writing Flow	
Figure 3-74 DPCD Reading Flow	
Figure 3-75 I2C Writing Flow	147

Figure 3-76 DP TX Block Diagram with Other IPs	.149
Figure 3-77 DP TX Encoder Block Diagram	.150
Figure 3-78 DP TX Transmitter Block Diagram	.150
Figure 3-79 DP TX AUX Diagram	.151
Figure 3-80 DPCD writing flow	.153
Figure 3-81 DPCD Reading Flow	.154
Figure 3-82 I2C Writing Flow	.154
Figure 3-83 HDMITX Block Diagram	.157
Figure 3-84 Block Diagram of ISP	.159
Figure 3-85 Block Diagram of AIE2.0	.161
Figure 3-86 Block Diagram of CSI Modules (D-PHY and C-PHY mode)	.164
Figure 3-87 CSI Programming Sequence	.165
Figure 3-88 Seninf_top Basic Data Path (One Port)	.166
Figure 3-89 Power-On Sequence Timing	.169
Figure 3-90 Block Diagram of VENC	.171
Figure 3-91 Audio Interfaces Block Diagram	.175
Figure 3-92 I2S Master Mode Timing Diagram	.177
Figure 3-93 PCM Master Mode Timing Diagram	.178
Figure 3-94 PCM Slave Mode Timing Diagram	.178
Figure 3-95 TDM Master Mode Timing Diagram	.179
Figure 3-96 PDM Timing Diagram	.180
Figure 3-97 Block Diagram of I3C/I2C	.183
Figure 3-98 I2C/I3C Function Description Wording Conventions	.183
Figure 3-99 I2C Clock Stretching	.184
Figure 3-100 I2C Frame Format in SM/FM/FM+	.184
Figure 3-101 I2C Write Frame Format in HS Mode	.185
Figure 3-102 I3C Dynamic Address Assignment (DAA)	.185
Figure 3-103 I3C SDR Private Write/Read	.186
Figure 3-104 I3C SDR Broadcast CCC	.186
Figure 3-105 I3C SDR direct CCC	.186
Figure 3-106 Multi-user of I3C/I2C	.187
Figure 3-107 I2C/I3C Single-Byte Access	.188
Figure 3-108 I2C/I3C Single-Byte Access	.188
Figure 3-109 Combined Write/Read with Repeated START (Direction Changed)	.189
Figure 3-110 Change Transfer Length in Write/Read Mode (No Direction Change)	.189
Figure 3-111 Repeated START Multiple Transfers (Write/Read Mode)	.190
Figure 3-112 I2C AC Timing Diagram of F/S Mode	.191
Figure 3-113 I2C AC Timing Diagram of HS Mode	.192
Figure 3-114 Programming Flow of I3C/I2C	.192
Figure 3-115 Block Diagram of UART	.194
Figure 3-116 UART Communication Protocol	.196
Figure 3-117 UART Timing Diagram	.204
Figure 3-118 UART Data Transmission with THRE Bit Status Polling	.206
Figure 3-119 UART Data Reception with DR Bit Status Polling	.207
Figure 3-120 Block Diagram of SPIM	.208

Figure 3-121 SPI Transmission Formats	212
Figure 3-122 SPI Pause Mode State Transition	212
Figure 3-123 CS_N De-assert Mode	212
Figure 3-124 Four Communication Modes Waveform for SPI	212
Figure 3-125 SPI Transaction Format	213
Figure 3-126 SPIM Timing Diagram	214
Figure 3-127 Block Diagram of SSUSB	216
Figure 3-128 SSUSB host architecture	217
Figure 3-129 USB2 Device Architecture	218
Figure 3-130 Relation between Extra Defined Fields Parameters and Microframes	226
Figure 3-131 Relation between bCSCount Parameters and Microframes	226
Figure 3-132 Standard xHCI_add_endpoint() Flow	227
Figure 3-133 Patched xHCI_add_endpoint() Flow	227
Figure 3-134 Standard xHCI_drop_endpoint() Flow	228
Figure 3-135 Patched xHCI_drop_endpoint() Flow	229
Figure 3-136 EPO States	229
Figure 3-137 EPO Idle Flow Chart	231
Figure 3-138 EPO Idle	231
Figure 3-139 EP0 TX Mode Flow Chart	232
Figure 3-140 EP0 TX Mode Flow Chart	233
Figure 3-141 EP0 RX Mode Flow Chart	234
Figure 3-142 EP0 IDLE for RX Mode	
Figure 3-143 GPD (USB)/BD Bus Transfer	
Figure 3-144 GPD (USB)/BD with Extension	235
Figure 3-145 TX GPD (USB)/BD Format	
Figure 3-146 RX GPD (USB)/BD Format	237
Figure 3-147 TXQ Programming Flow	239
Figure 3-148 TXQ Initialization Flow	
Figure 3-149 TXQ STALL Flow	240
Figure 3-150 TXQ Short Packet (I) Flow	241
Figure 3-151 TXQ Short Packet (II) Flow	242
Figure 3-152 TXQ Error Handling Flow	243
Figure 3-153 TXQ GPD (USB) Execution Flow	244
Figure 3-154 RXQ Programming Flow	
Figure 3-155 RXQ Initialization Flow	245
Figure 3-156 RXQ STALL Flow	246
Figure 3-157 RXQ Drop Packet Flow	
Figure 3-158 RXQ Error Handling Flow	
Figure 3-159 RXQ GPD (USB) Execution Flow	
Figure 3-160 Interrupt Architecture	
Figure 3-161 Example Interrupt Setting	
Figure 3-162 QMU Interrupt Layer	
Figure 3-163 Interrupts Status/Mask/Mask Set/Mask Clear	
Figure 3-164 Power Saving Flow: Initial	
Figure 3-165 Power Saving Flow: SuperSpeed	254

Figure 2, 100 Device Coving Flow, Wich around and Full around	255
Figure 3-166 Power Saving Flow: High-speed and Full-speed Figure 3-167 EPn MCU Mode TX Programming Flow	
Figure 3-168 EPn MCU Mode RX Programming Flow	
Figure 3-169 Block Diagram of USB 3.1 Gen1 PHY	
Figure 3-170 Connection of I2C Signals	
Figure 3-171 Block Diagram of ENIC	
Figure 3-172 Ethernet Frame Format without VLAN Tag	
Figure 3-173 Ethernet Frame Format with VLAN Tag	
Figure 3-174 Pause Frame Format	
Figure 3-175 MII Transmit Waveform	
Figure 3-176 MII Transmit Waveform with Error Occurring	
Figure 3-177 MII Receive Waveform	
Figure 3-178 RGMII Transmit Waveform in 1000M	
Figure 3-179 RGMII Transmit Waveform with Error Occurring in 1000M	
Figure 3-180 RGMII Receive Waveform in 1000M	
Figure 3-181 RGMII Receive Waveform with Error Occurring in 1000M	
Figure 3-182 RGMII Transmit Waveform in 10/100M	
Figure 3-183 RGMII Transmit Waveform with Error Occurring in 10/100M	272
Figure 3-184 RGMII Receive Waveform in 10/100M	273
Figure 3-185 RGMII Receive Waveform with Error Occurring in 10/100M	273
Figure 3-186 RMII Signal Connection between PHY and MAC	273
Figure 3-187 RMII Receive Waveform	274
Figure 3-188 No Preamble Case	275
Figure 3-189 Odd Preamble Case	275
Figure 3-190 Hash Table Set	277
Figure 3-191 Hash Table Control Flow Chart	278
Figure 3-192 Hash Value Calculation	279
Figure 3-193 Transmit Flow Chart	280
Figure 3-194 ENIC MII Timing Diagram	
Figure 3-195 ENIC RMII Timing Diagram	
Figure 3-196 ENIC RGMII Timing Diagram	
Figure 3-197 ENIC MDIO Timing Diagram	
Figure 3-198 Block Diagram of PCIe Controller	
Figure 3-199 RC Send I/O TLP Flow	
Figure 3-200 Transmit Message TLP Flow	
Figure 3-201 Transmit Message TLP by Message Pool Mode	
Figure 3-202 RC Received LTR Message Flow	
Figure 3-203 RC Received Other Supported Message Flow	
Figure 3-204 PCIe Reset Scheme	
Figure 3-205 RC Handles Received INTX Flow If ISTATUS_CTRL[3] Is 0	
Figure 3-205 RC Handles Received MSI Flow	
Figure 3-200 RC Enters L2 State Flow	
Figure 3-207 RC Enters L2 State Flow	
-	
Figure 3-209 RC L1 Entry with and without Clock Removal	
Figure 3-210 RC Receive Memory Write TLP	

Figure 3-211 RC Receive Memory Read TLP	311
Figure 3-212 PCIe to AXI Master Address Translation for RC	312
Figure 3-213 RC Initiated Memory Write	312
Figure 3-214 RC Initiated Memory Read	312
Figure 3-215 AXI Slave to PCIe Address Translation for RC	313
Figure 3-216 AXI Slave to PCIe Address Translation	315
Figure 3-217 RC Configuration Read/Write	316
Figure 3-218 RC Access Configuration Space by Backend Interface	318
Figure 3-219 Block Diagram of PCIe PHY	324
Figure 3-220 PCIe 100 MHz Reference Clock (REFCLK) Architecture on PCB	324
Figure 3-221 Block Diagram of Keypad Top	340
Figure 3-222 KP1 Block Diagram	341
Figure 3-223 2 × 2 KeyPad Matrix (8 Keys)	343
Figure 3-224 GPIO Block Diagram	355
Figure 3-225 Block Diagram of PWM	
Figure 3-226 Frequency Division Generation	
Figure 3-227 Data Sequence Generation	
Figure 3-228 PWM Normal Mode	
Figure 3-229 FIFO Mode	
Figure 3-230 Memory Mode	
Figure 3-231 Memory Mode and Stop-bit Position	
Figure 3-232 PWM Random Mode	
Figure 3-233 Block Diagram of SYSTMR	374
Figure 3-234 Block Diagram of APXGPT	378
Figure 3-235 Block Diagram of AUXADC	
Figure 3-236 Theory of AUXADC Operation	
Figure 3-237 Thermal Control Subsystem	
Figure 3-238 Block Diagram of System Temperature Measurement Scheme	
Figure 3-239 Interrupt Conditions for High/Low Temperature Monitoring	
Figure 3-240 Finite State Machine for High/Low Temperature Monitoring	
Figure 3-241 Interrupt Conditions of High/Low OFFSET Monitoring	
Figure 3-242 Finite State Machine for High/Low OFFSET Monitoring	
Figure 4-1 Ball Map Diagram	
Figure 4-2 Package Quadrants Mapping	
Figure 5-1 Block Diagram of TOPRGU	456
Figure 6-1 Device clock diagram	460
Figure 7-1 Top marking	468

List of Tables

Table 1-1 Device Features	
Table 1-2 Ordering Information	20
Table 2-1 Column Headers Description	21
Table 2-2 Timing Parameters	22
Table 3-1 INTC Interrupt	

Table 3-2 Debug Signals	44
Table 3-3 Features of a Single VP6	49
Table 3-4 Clock Selection Programming Outline	57
Table 3-5 MCUSYS Function Block List	<mark>58</mark>
Table 3-6 IRQ	<mark>60</mark>
Table 3-7 INTC Programming Outline	<mark>63</mark>
Table 3-8 EINT Programming Outline	<mark>63</mark>
Table 3-9 Timer Programming Outline	<mark>65</mark>
Table 3-10 WDT Programming Outline	65
Table 3-11 GPIO Programming Outline	<mark>66</mark>
Table 3-12 SCP Memory Map	<mark>67</mark>
Table 3-13 System Address Map from SCP View	<mark>69</mark>
Table 3-14 SCP Signal Descriptions	<mark>69</mark>
Table 3-15 LPDDR4X DFS (Mbps)	71
Table 3-16 Voltage Support and Desciption	75
Table 3-17 DRAMC Signal Description	75
Table 3-18 LPDDR4X Device Combinations	<mark>76</mark>
Table 3-19 EMI Signal Descriptions (LPDDR4(X))	77
Table 3-20 MSDC Function and Address	<mark>86</mark>
Table 3-21 MSDC Signal Descriptions	<mark>91</mark>
Table 3-22 MSDC Signal Mapping	<mark>92</mark>
Table 3-23 MSDC Timing Characteristics (Default Speed mode)	<mark>93</mark>
Table 3-24 MSDC Timing Characteristics (High Speed mode)	<mark>93</mark>
Table 3-25 MSDC Timing Characteristics (SDR12/SDR25/SDR50/SDR104 modes)	94
Table 3-26 MSDC Timing Characteristics (DDR50 mode)	<mark>95</mark>
Table 3-27 MSDC Timing Characteristics (HS200 mode)	<mark>96</mark>
Table 3-28 MSDC Timing Characteristics (HS400 mode)	97
Table 3-29 SNFC Modules	<mark>99</mark>
Table 3-30 Methods to Read Serial NOR Flash	100
Table 3-31 Methods to Write Serial NOR Flash	100
Table 3-32 Read ID (RDID) Operation Programming Flow	101
Table 3-33 Erase-command Formats	102
Table 3-34 Sector Erase and Block Erase Operation Programming Flow	102
Table 3-35 Chip Erase Operation Programming Flow	
Table 3-36 Methods to Program Seiral NOR Flash	
Table 3-37 Page Program (PP) Operation Flow	105
Table 3-38 Multi-Page Program (MPP) Operation Flow	106
Table 3-39 PIO Write Operation Programming Flow	107
Table 3-40 PIO Read Operation Programming Flow	108
Table 3-41 DMA Read Operation Programming Flow	109
Table 3-42 Enter Quad-byte Address Mode Operation Programming Flow	
Table 3-43 Exit Quad-byte Address Mode Operation Programming Flow	
Table 3-44 Overall SNFC Programming Guide	
Table 3-45 SNOR Signal Descriptions	
Table 3-46 SNOR Timing Characteristics	113

Table 3-47 MIPI D-PHY Initialization Programming Sequence	122
Table 3-48 D-PHY Power-off Programming Sequence	123
Table 3-49 D-PHY Timing Parameters Register Setting	124
Table 3-50 D-PHY Global Operation Timing Parameter Defined by MIPI Specification	124
Table 3-51 C-PHY Global Operation Timing Parameter Defined by MIPI Specification	126
Table 3-52 Config Field Description of Main Instruction	130
Table 3-53 Type-0 Instruction Format	130
Table 3-54 Type-0 TX Example	130
Table 3-55 Type-1 Instruction Format	131
Table 3-56 Type-1 TX Example	131
Table 3-57 Type-2 Instruction Format	132
Table 3-58 Type-2 TX Example	132
Table 3-59 Type-3 Instruction Format	133
Table 3-60 Type-3 TX Example	133
Table 3-61 Example of Peripheral TE Signaling Detection	133
Table 3-62 Example of External TE Pin Detection	134
Table 3-63 DSI Non-busy Detection by DSI_BUSY Register	134
Table 3-64 DSI Non-busy Detection by DSI_DONE Event	135
Table 3-65 DSI Non-busy Detection by VM_DONE/CM_DONE Interrupt	135
Table 3-66 D-PHY Lane Swap Control Register	135
Table 3-67 C-PHY Trio Swap Control Register	136
Table 3-68 DSI signal descriptions	137
Table 3-69 DPI Signal Descriptions	
Table 3-70 DPI Timing Characteristics	139
Table 3-71 EDPTX Signal Descriptions	
Table 3-72 DPTX Signal Descriptions	149
Table 3-73 HDMITX Signal Descriptions	
Table 3-74 Camera Signal Descriptions	
Table 3-75 CSIO Signal Descriptions	
Table 3-76 CSI1 Signal Descriptions	
Table 3-77 MIPI D-PHY RX Electrical Characteristics	
Table 3-78 Load Default Setting	
Table 3-79 Performance Setting	
Table 3-80 eFuse Reading	
Table 3-81 4-Lane DPHY Cam Mode	
Table 3-82 4D1C Lane Enable Top Programming Outline	
Table 3-83 4D1C Clock Lane and Data Lane Setting Top Programming Outline	
Table 3-84 Phy_seninf_mux_0 Setting	
Table 3-85 Seninf1 Setting	
Table 3-86 Seninf_top_mux Setting	
Table 3-87 Seninf_mux_1 Setting	
Table 3-88 Seninf_cam_mux Setting	
Table 3-89 Analog Power-On Sequence	
Table 3-90 Analog Power-Off	
Table 3-91 CAM_CLK Pad Configuration	170

Table 3-92 VENC Supported Formats	171
Table 3-93 I2S Signal Descriptions	175
Table 3-94 I2S Timing Characteristics	176
Table 3-95 PCM Signal Descriptions	177
Table 3-96 PCM Timing Characteristics	177
Table 3-97 TDM Signal Descriptions	178
Table 3-98 TDM Timing Characteristics	179
Table 3-99 PDM Timing Characteristics	179
Table 3-100 DMIC Signal Descriptions	180
Table 3-101 SPDIF Signal Descriptions	180
Table 3-102 PMIC Audio Interface Signal Descriptions	181
Table 3-103 I2C/I3C Signal Descriptions	182
Table 3-104 I3C/I2C Interrupt Control Bits and Interrupt Factors	186
Table 3-105 I2C AC Timing Parameters for Standard, Fast, and Fast-mode Plus	
Table 3-106 I2C AC Timing Parameters for HS Mode	191
Table 3-107 External Signals Descriptions	
Table 3-108 DMA Signal Descriptions	196
Table 3-109 UART Interrupt Control Bits and Interrupt Factors	
Table 3-110 UART Interrupt Types	
Table 3-111 CTS and RTS Signals Behaviors	
Table 3-112 UART Register Map	
Table 3-113 UART Register Remap	
Table 3-114 Bit Extension Number Reference	
Table 3-115 Data Transmission Mechanism	203
Table 3-116 UART Electrical Specifications	
Table 3-117 Suggested UART Baud Rate Setting	
Table 3-118 UART Baud Rate Setting Example	
Table 3-119 UART Hardware Initialization	
Table 3-120 SPIM Signal Descriptions	
Table 3-121 SPIM Signal Descriptions	
Table 3-122 SPIM Function Descriptions	
Table 3-123 SPIM Timing Characteristics	
Table 3-124 USB signal descriptions	
Table 3-125 USB Host Initialization	
Table 3-126 USB Device Initialization	
Table 3-127 EPO Programming Sequence	
Table 3-128 TX EPn Programming Sequence	
Table 3-129 RX EPn Programming Sequence	
Table 3-130 Endpoint Context	
Table 3-131 Extra Defined Fields for Endpoint Context	
Table 3-132 GPD (USB) Field Description	
Table 3-133 BD Field Description	
Table 3-134 Reset Sequence of USB Device Mode	
Table 3-135 USB 3.1 Spread Spectrum Clock (SSC) Electrical Characteristics Table 3-135 USB 3.1 Spread Spectrum Clock (SSC) Electrical Characteristics	
Table 3-136 USB 3.1 Gen1 Transmitter and Receiver Electrical Characteristics	

Table 3-137 ENIC Signal Descriptions	281
Table 3-138 ENIC MII Timing Characteristics	281
Table 3-139 ENIC RMII Timing Characteristics	282
Table 3-140 ENIC RGMII Timing Characteristics	283
Table 3-141 ENIC MDIO Timing Characteristics	284
Table 3-142 PCIe Layers and Components	290
Table 3-143 RC Set Address Translation Table for I/O TLP Example	292
Table 3-144 ADT Setting Example for Transmit Message TLP	293
Table 3-145 ADT Setting Example for Message Pool Mode	. 294
Table 3-146 RC Handle LTR Message Interrupt Example	297
Table 3-147 RC Handle Other Supported Message Interrupt Example	298
Table 3-148 Reset Signal Description	. 299
Table 3-149 Reset Control	299
Table 3-150 Reset Scope for PI Exit Event	. 300
Table 3-151 Local Interrupt Table for RC Mode	301
Table 3-152 RC Set MSI Capability Example	305
Table 3-153 RC Clear MSI Status Example	. 306
Table 3-154 RC L1 State Setting	310
Table 3-155 Address Translation Table Address	313
Table 3-156 Transfer Parameter	314
Table 3-157 Set Address Translation Table for PCIe to AXI Direction	314
Table 3-158 Set Address Translation Table for AXI to PCIe Direction	
Table 3-159 PCIe Configuration Space Register Address for Backend	317
Table 3-160 PCIE_CFGNUM (0x140) Bit Definition	317
Table 3-161 RC Initialization Sequence	318
Table 3-162 PCIe Module Register Mapping	
Table 3-163 PCIe Internal Register	322
Table 3-164 PCIe Configuration Space and PCIe Extended Configuration Space	322
Table 3-165 Loopback Mode Defined in PIPE Specification	325
Table 3-166 PCIe 2.5 GT/s Electrical Characteristics	325
Table 3-167 PCIe 5.0 GT/s Electrical Characteristics	326
Table 3-168 PCIe 100 MHz REFCLK Electrical Characteristics	326
Table 3-169 Power Requirement	327
Table 3-170 KP1 Module Description	
Table 3-171 Keypad Signal Descriptions	
Table 3-172 Keypad Setting Flow	
Table 3-173 GPIO Pin Control	
Table 3-174 Driving Strength Control	
Table 3-175 General 1.8V I/O Cell	
Table 3-176 KP 2K I/O Cell	
Table 3-177 KP 200K I/O Cell	347
Table 3-178 I3C I/O Cell	347 348
Table 3-178 I3C I/O Cell Table 3-179 RST I/O Cell	347 348 349
Table 3-178 I3C I/O Cell	347 348 349 350

Table 3-182 AGPIO General 1.8V I/O Cell	352
Table 3-183 GPIO Signal Descriptions	355
Table 3-184 Main Functions of GPIOs	360
Table 3-185 Strapping Configurations	361
Table 3-186 Strapping Configuration Register	361
Table 3-187 GPIO Mode Input Programming Outline	362
Table 3-188 GPIO Mode Output Programming Outline	362
Table 3-189 Electrical Characteristics and Operating Conditions of 1.8V Applications	363
Table 3-190 Pulse Width Modulation (PWM) Modes	363
Table 3-191 PWM Signal Descriptions	368
Table 3-192 Normal Mode Setting Procedures	
Table 3-193 FIFO Mode Setting Procedures	369
Table 3-194 Memory Mode Setting Procedures	370
Table 3-195 Random Mode Setting Procedures	371
Table 3-196 Operation Mode of GPT	379
Table 3-197 Clock Source of GPT	379
Table 3-198 APXGPT ONE-SHOT Mode Setting Flow	380
Table 3-199 APXGPT REPEAT Mode Setting Flow	
Table 3-200 APXGPT KEEP-GO Mode Setting Flow	382
Table 3-201 APXGPT FREERUN Mode Setting Flow	384
Table 3-202 GPT5 64-bit Counter Read Flow	384
Table 3-203 AUXADC Specifications	
Table 3-204 Immediate Mode Programming Sequence	
Table 3-205 Background Detection Programming Sequence	388
Table 3-206 TCSYS Signal Descriptions	390
Table 3-207 Locations Monitored by Temperature Sensors	. 393
Table 3-208 Thermal Controller Programming Guide	393
Table 3-209 Boot Flash Selection	394
Table 4-1 Ball Map-Top Left	397
Table 4-2 Ball Map-Top Center	398
Table 4-3 Ball Map-Top Right	
Table 4-4 Ball Map-Middle Left	400
Table 4-5 Ball Map-Middle Center	401
Table 4-6 Ball Map-Middle Right	402
Table 4-7 Ball Map-Bottom Left	403
Table 4-8 Ball Map-Bottom Center	404
Table 4-9 Ball Map-Bottom Right	405
Table 4-10 Pin Characteristics	406
Table 4-11 Power Rails	445
Table 5-1 Absolute Maximum Ratings	
Table 5-2 Storage Condition	
Table 5-3 Recommended Operating Conditions for Power Supply	
Table 5-4 PMIC_RTC32K_CK DC Specifications	
Table 5-5 SPII2CUARTIO DC Specifications	
Table 5-6 I2C/I2S DC Specifications	453

Table 5-7 I3CIO DC Specifications	
Table 5-8 eMMCIO DC Specifications	
Table 5-9 MSDC1IO DC Specifications (2.8V/3.0V)	
Table 5-10 MSDC1IO DC Specifications	
Table 5-11 MSDC2IO DC Specifications (2.8V/3.0V)	
Table 5-12 MSDC2IO DC	
Table 5-13 Reset Signal Descriptions	
Table 5-14 DSI D-PHY TX Electrical Characteristics	
Table 5-15 DSI C-PHY TX Electrical Characteristics	
Table 5-16 CSI D-PHY RX Electrical Characteristics	
Table 6-1 Maximum performance ratings	
Table 6-2 ARMPLL_LL specifications	
Table 6-3 ARMPLL_BL specifications	
Table 6-4 CCIPLL specifications	
Table 6-5 ETHPLL specifications	
Table 6-6 MSDCPLL specifications	
Table 6-7 TVDPLL1 specifications	
Table 6-8 TVDPLL2 specifications	
Table 6-9 MPLL specifications	
Table 6-10 MMPLL specifications	
Table 6-11 MAINPLL specifications	
Table 6-12 IMGPLL specifications	
Table 6-13 UNIVPLL specifications	
Table 6-14 ADSPPLL specifications	
Table 6-15 APLL1 specifications	
Table 6-16 APLL2 specifications	
Table 6-17 APLL3 specifications	
Table 6-18 APLL4 specifications	
Table 6-19 APLL5 specifications	
Table 6-20 MFGPLL specifications	
Table 6-21 CKSQ specifications	
Table 6-22 Clock signal descriptions	
Table 7-1 MT8370 AV/AZA thermal operating specifications	
Table 7-2 MT8370 IV/KZA thermal operating specifications	
Table 7-3 Printed device reference and decoding	

Introduction 1

MT8370 is a highly integrated platform incorporating the following key features:

- Dual-core Arm[®] Cortex[®]-A78 processor
- Quad-core Arm Cortex-A55 processor
- Arm Mali[™]-G57 MC2 3D Graphics Accelerator (GPU) . with Vulkan[®] 1.1, OpenGL ES 3.2 and OpenCL[™] 2.2
- Single-core AI Processor Unit (APU) Cadence® Tensilica®VP6 processor with AI Accelerator (AIA)

Figure 1-1 shows the functional block diagram of the device.

Single-core Cadence HiFi 5 Audio Engine DSP

- LPDDR4(X): Up to 8 GB, with memory data rate up • to LPDDR4(X)-3733
- Display output supporting FHD60 + 4K60 resolution •
- Image processing: 32MP @ 30fps for single camera capture; 16MP + 16MP @ 30fps for dual camera capture
- Video encoding: 4K @ 30 fps with HEVC/H.264
- Video decoding: 4K @ 60 fps with AV1/VP9/HEVC/H.264

Figure 1-1 Functional Block Diagram

•

1.1 Features Overview

Table	1-1	Device	Features
-------	-----	--------	----------

	-1 Device Features			
Feature		MT8370		
Processors				
Dual-core Arm Cortex-A78	A78	2000 MHz		
Quad-core Arm Cortex-A55	A55	2000 MHz		
Graphics Accelerator Mali-G57 MC2	GPU	950 MHz		
HiFi 5 Digital Signal Processor	DSP	800 MHz		
	VP6	832 MHz		
Al Processor Unit	MDLA	700 MHz		
System Companion Processor	SCP	832 MHz		
Memory				
External memory interface (LPDDR4(X))	EMI	Up to 8GB LPDDR4(X)-3733/DDR4-3200		
Storage		•		
	MSDC0	eMMC (1-/4-/8-bit)		
Memory Card Controller eMMC [™] /SD [®] /SDIO	MSDC1	SD/SDIO (1-/4-bit)		
	MSDC2	SD/SDIO Card (1-/4-bit)		
Serial NOR Flash Interface	SNOR	Yes		
Display				
High-Definition Multimedia Interface Transmitter	HDMITX	HDMI™ 2.0b		
Digital Display Parallel Interface	DPI	16-bit		
DisplayPort Interface	DPTX	Yes (DP 1.4)		
Embedded DisplayPort Interface	EDPTX	Yes (DP 1.2)		
	DSIO	4-lane D-PHY, or 3-trio C-PHY		
MIPI [™] Display Serial Interface	DSI1	4-lane D-PHY, or 3-trio C-PHY		
Imaging				
	100	Single camera: 32MP @ 30fps		
Image Signal Processor	ISP	Dual camera: 16MP + 16MP @ 30fps		
		1 × 4-lane D-PHY, or 2 × 2-lane D-PHY,		
MIPI Camera Serial Interface 2	CSI0	or 1 × 3-trio C-PHY, or 2 × 2-trio C-PHY		
	CSI1	1 × 4-lane D-PHY, or 1 × 3-trio C-PHY		
Face Detection	FD	Yes		
Warp Engine	WPE	Yes		
JPEG Encoder	JPEG	Baseline encoding and decoding (250 MP/s)		
Video				
Video Encoder	VENC	HEVC/H.264, 4K @ 30 fps		
Video Decoder	VDEC	AV1/VP9/HEVC/H.264, 4K @ 60 fps		
Audio				
Inter-IC Sound	125			
Time Division Multiplexed Interface	TDM	4 (2 input, 2 output)		
Pulse Code Modulation	PCM	1		
Pulse Density Modulation (Decoder for DMIC)	PDM	4 × stereo		
raise bensity modulation (becoder for binite)				

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Feature		MT8370
Divited to the off one	SPDIF_IN	2
Digital Interface	SPDIF_OUT	1
later laterarted Circuit	12C	5
Inter-Integrated Circuit	I3C	2 ⁽¹⁾
Universal Asynchronous Receiver/Transmitter	UART	4
Serial Peripheral Interface	SPI	6 (master mode only)
	USB Port 0	USB 2.0 DRD
Universal Serial Bus	USB Port 1	SS USB 3.1 Gen1 DRD
	USB Port 2	USB 2.0 DRD
KeyPad Scanner	KeyPad	2 × 2
General Purpose I/O pins	GPIO	177
Pulse Width Modulation	PWM	Up to 4
Peripheral Component Interconnect Express	PCle	Gen2, 1-lane, RC mode
Gigabit Ethernet Network Interface Controller	ENIC	MII/RMII/RGMII
Miscellaneous		
Auxiliary ADC	AUXADC	12-bit, 6-channel
	GPT	5 × 32-bit and 1 × 64-bit
Timers	SYSTMR	64-bit
	WDT ⁽²⁾	Yes
Thermal Controller	TCSYS	Yes

1. I3C5 and I3C6 support MIPI I3C[®] (SDR mode only).

2. The Watchdog Timer (WDT) is part of the Top Reset Generation Unit (TOPRGU).

1.2 Ordering Information

Table 1-2 Ordering Information

Order#	Marking	Operating Junction Temperature	PCB thickness (T)	HDMI (RX/TX)	Package
MT8370AV/AZA	See Section 7.2 Top Marking	-20~95°С Т」	T ≤ 1.6mm	Yes	MFC-VFBGA
MT8370IV/KZA	See Section 7.2 Top Marking	-40~105°C TJ	T ≤ 1.6mm	Yes	MFC-VFBGA

2 Preface

2.1 Pin Characteristics and Signal Descriptions Conventions

 Table 2-1 describes the column headers in all Pin Characteristic and Signal Description tables in Section 4.2 Pin

 Characteristics and Chapter 3 Features Description.

Column Name	Explanations		
Ball Name	Logical name of the ball. Note that there may exist a selection of several signals for the same ball		
Dan Name	(aux mode).		
Ball Location	Ball's physical location on the chip package		
Signal Name	The name of the signal for the given aux mode		
	Pin type when configured for the given aux mode:		
	Al: Analog input		
	AO: Analog output		
	AIO: Analog bi-directional pin		
Туре	DI: Digital input		
	DO: Digital output		
	DIO: Digital bi-directional pin		
	• P: Power		
	G: Ground		
Description	Description of the signal		
	Auxiliary function mode number:		
Aux. Function	0 through 7 are possible alternative functions		
	An empty box means Not Applicable and the ball is dedicated to one function only		
Reset State	Shows the Aux. function configured at the release of the SYSRSTB signal		
Buffer Type	Describes the associated input/output buffer type		
Power Domain	Indicates the voltage supply that powers the terminal IO buffers		
	Indicates the state of an internal pull-up or pull-down resistor at the release of the SYSRSTB signal:		
	OFF: Internal pull-up and pull-down are disabled		
	PU: Pull-up is enabled		
PU/PD	PD: Pull-down is enabled		
	No: Pull-up and pull-down not available		
	Blank cell means "No"		
IO Reset Value	Shows the IO state at the release of the SYSRSTB signal		

Table 2-1 Column Headers Description

2.2 Timing Conventions, Parameters, and Information

This section provides a general description of used symbols, adopted standards and terminology, and test process. All timing characteristics are valid over the represented operating conditions unless otherwise specified.

The interface clock frequency documented in this datasheet is the maximum clock frequency, which corresponds to the maximum programmable frequency on the particular output clock. The frequency defines the maximum limit supported by the device and does not consider into account any system limitation (layouts, connectors, and so forth). The system designer should take into account these system considerations and the device timing characteristics as well and should determine properly the maximum frequency supported to transfer the data on the corresponding interface. The timing parameter values do not include delays by board routes. Timing values may be adjusted by increasing/decreasing such delays. If needed, external logic hardware such as buffers may be used to compensate any timing differences.

2.2.1 Timing Parameters and Information

Table 2-2 represents timing parameter symbols and descriptions used in the timing characteristic tables.

Symbol	Description
f _{op}	Operating frequency
t _p	Period (cycle time)
t _d	Delay time
t _{dis}	Disable time
t _{en}	Enable time
th	Hold time
t _{su}	Setup time
Start	Start bit
tt	Transition time
t _v	Valid time
tw	Pulse duration
tfall	Fall time
t _{RISE}	Rise time
Vон	High level output voltage
Vol	Low level output voltage
ViH	High level input voltage
VIL	Low level input voltage
Vref	Reference voltage

Table 2-2 Timing Parameters

2.2.2 Parameter Information

This datasheet provides timing values at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be also taken into account.

All timing requirements and switching characteristics are valid over the recommended operating conditions unless otherwise specified.

All rise and fall transition timing parameters are referenced correspondingly to 90% and 10% of the signal logical levels, unless otherwise specified.

2.3 Abbreviations

Α

АСР Accelerate Coherency Port ADC Analog to Digital Convertor AE Auto Exposure AER Advanced Error Reporting AES Advanced Encryption Standard AF Auto Focus AFBC ARM Frame Buffer Compression AHB Advanced High-Performance Bus AI Artificial Intelligence AIA AI Accelerator ALLM Auto Low Latency Mode ΑΡ Application Processor АРВ Advanced Peripheral Bus АРС Address Protection Controller ΑΡΙ Application Programming Interface APMCU Application Processing Microcontroller Unit APU AI Processor Unit APXGPT Application Processor X General Purpose Timer ASPM Active State Power Management ASRC Asynchronous Sample Rate Converter ASSR Alternative Scrambler Seed Reset

© 2023-2024 MediaTek Inc. All rights reserved.

AUXADC

Auxiliary Analog/Digital Converter AV Audio Video AVB Audio Video Bridge AWB Auto White Balance AXI

Advanced eXtensible Interface

В

Baud Clock

BCLK

BD Buffer Descriptor BDP Buffer Descriptor Present BTA Bus Turnaround

С

CBS

Credit-based Shaper ссс Common Command Code сси Camera Control Unit CDR Clock and Data Recovery CEC **Consumer Electronics Control** CG Clock Gating CIC Configuration Information Capability СКЅҮЅ Clock System СКSQ Clock Squarer CMDE Command Engine CMDQ Command Queue СРНА

Clock Phase

CPOL

Clock Polarity

CPU

Central Processing Unit

CPUBIU

CPU Bus Interface Unit

CRC

Cyclic Redundancy Check

CS

Complete Spilt CSC Color Space Conversion CSI

Camera Serial Interface

стѕ

Clear to Send **CTSI**

Clear to Send Interrupt

Computer Vision

D

DA **Destination Address** DAA Dynamic Address Assignment DDC Display Data Channel DDR Dual Data Rate DFS Dynamic Frequency Scaling DLL Divisor Latch LS (Least Significant Bit) DLM Divisor Latch MS (Most Significant Bit) DMA **Direct Memory Access** DMIC **Digital Microphone** DO Digital Output DP DisplayPort

DP TX
DisplayPort Transmitter
DP TX AUX
DisplayPort Transmitter Auxiliary Channel
DPI
Display Parallel Interface
DRAM
Dynamic Random Access Memory
DRD
Dual-Role-Device
DRE
Dark Region Enhancement
DRM
Digital Rights Management
DSC
Display Stream Compression
DSD
Direct Stream Digital
DSI
Display Serial Interface
DSP
Digital Signal Processor
DSU
DynamicIQ Shared Unit. Also referred to as the "CPU cluster" or "cluster" in this document.
DVFS
Dynamic Voltage and Frequency Scaling
DVI
Digital Visual Interface

Ε

ЕСС

Error Correction Code/Error Checking and Correction ECRC Endpoint Cyclic Redundancy Check ED Endpoint EDID Extended Display Identification Data EDMA EXternal Data Memory Access eDP Embedded DisplayPort EEE Energy Efficient Ethernet EINT

External Interrupt

ELSI

Enable Line Status Interrupt

EMI

External Memory Interface

еММС

Embedded MultiMediaCard

ENIC

Ethernet Network Interface Controller EOL End of List ERBFI Enable RX Buffer Full Interrupt ETBEI

Enable TX Buffer Empty Interrupt

F

FCR IIR

FIFO Control Register/Interrupt Identification Register FD Face Detection FIFO First In First Out FHD Full High-Definition FLADJ Frame Length Adjustment Register FM Fast Mode FM+

Fast Mode Plus **FPU** Floating Point Unit **FSM** Finite State Machine

G

GIC Generic Interrupt Controller GPGPU General Purpose computing on GPU GPIO General-purpose Input/Output GPT General-Purpose Timer

GPU

Graphics Processing Unit

Н

нсі

Host Controller Interface HCLK Hopping Clock HDCP High-bandwidth Digital Content Protection HDMI High Definition Multimedia Interface HDMITX High Definition Multimedia Interface Transmitter HDR High Dynamic Range HEIF High Efficiency Image File HLG Hybrid Log Gamma HLOS High-Level Operating System ΗP Half Precision HPD Hot Plug Detect

HSYNC Horizontal Sync

ню

Hardware Ownership

I

I2C Inter-Integrated Circuit I2S Inter-IC Sound I3C Improved Inter-Integrated Circuit ICE In-Circuit Emulator IECR Interrupt Enable Clear Register IER Interrupt Enable Register IESER

Interrupt Enable Set Register

IMODI

Interrupt Moderation Interval

ΙΝΤϹ

Internal Interrupt Controller

юC

Interrupt On Completion

ют

Internet of Things

IPC

Inter-Processor Communication

IPG

Inter-Packet Gap

IPPC

IP Power Control

IRQ

Interrupt Request

ISA

Instruction Set Architecture

ISP

Image Signal Processor

ISR

Interrupt Service Routine

J

JTAG

Joint Test Action Group

Κ

КΡ

Keypad

L

L1PMSS

L1 Power Management Substates L2TCM L2 Tightly-Coupled-Memory LCD Liquid-Crystal Display LCR Line Control Register LFPS Low Frequency Periodic Signaling LPM

Lower power management

LSB

Least Significant Bit LSR Line Status Register LTR Latency Tolerance Reporting LTSSM

Link Training and Status State Machine

Low Voltage Thermal Sensor

М

мас

Multiply-Accumulate/Media Access Control **MBIST** Memory Built-In Self-Test мвох Mailbox MCR Modem Control Register мси Microcontroller Unit MDC Management Data Clock MDIO Management Data Input/Output MDLA MediaTek Deep Learning Accelerators MFG MediaTek Flexible Graphics MII Media Independent Interface ΜΙΡΙ Mobile Industry Processor Interface MISO Master in slave out MMU Memory Management Unit MOSI Master out slave in MPP Multi-Page Program MPS Maximum Packet Size MPU

Memory Protection Unit

MSA

Main Stream Attribute

MSB

Most Significant Bit

MSDC

MMC (MultiMediaCard) and SD (Secure Digital) Controller

MSI

Message Signaled Interrupt

MSR

Modem Status Register

MTL

MAC Transaction Layer

MTT

Multiple Transaction Translator **MUX** Multiplexer

N

_

NN

Neural Network

0

отg

On-The-Go

Ρ

PCle

Peripheral Component Interconnect Express PCLK Peripheral Clock PCM Pulse Code Modulation PDM Pulse Density Modulation PHY Physical Layer

РНҮА

Analog PHY

PHYD

Digital PHY

PIF

Processor Interface

ΡΙΟ

Programmed Input/Output

PIPE

PHY Interface for PCI Express

PLL

Phase-Locked Loop

ΡΜΙϹ

Power Management Integrated Circuit

PMSS

Power Management Substates

POR

Power-On-Reset

PP

Page Program

PPB

Private Peripheral Bus

PPS

Pulse-Per-Second

PVT

Process, Voltage, and Temperature **PWM** Pulse Width Modulation

PQ

Perceptual Quantizer

Q

QE

Quad Enable **QMU** Queue Management Unit **QoS** Quality of Service

R

RBR RX Buffer Register RC Root Complex RGMII Reduced GMII RH Relative Humidity RL Read Latency RMII Reduced MII RMS

Root Mean Square

RPU

Region Protection Unit

RQS

Receive Queue Size

RSF

Receive Store and Forward

RTC

Real Time Clock

RTOS

Real Time Operating System **RTS** Request to Send **RTSI** Request to Send Interrupt

RX

Receiver

S

SA

Source Address SAR Successive Approximation Register SCK Serial Clock SCL Serial Clock Line SCP System Companion Processor SCR Scratch Register SDA Serial Data Line SDIO Secure Digital Input/Output SDK Software Development Kit SDM Sigma-Delta Modulation SDR Single Data Rate/Standard Dynamic Range SDRAM Synchronous Dynamic Random-Access Memory SFD Start of Frame Delimiter

SIMD Single Instruction Multiple Data SМ Standard Mode SMI Smart Multimedia Interface **SNFC** Serial NOR Flash Controller SoC System on Chip SP Single Precision SPDIF SPM Static Random Access Memory Sampling Rate Converter SSUSB SuperSpeed Universal Serial Bus SYSTMR System Timer SW Software SYSRAM тсм

Sony/Philips Digital Interface Format

SPI

Serial Peripheral Interface

System Power Management

SRAM

SRC

SSC

Spread Spectrum Clocking

System Static Random Access Memory

Т

Tightly Coupled Memory TCSYS Thermal Control Subsystem TDM Time Division Multiplexing ΤΕ Tearing Effect THR TX Holding Register THRE

TX Holding Register Empty

TLP

Transaction Layer Packet

TMDS

Transition-Minimized Differential Signaling

TOPRGU

Top Reset Generation Unit

TOPS

Tera Operations Per Second

TQS

Transmit Queue Size

TRB

Transfer Request Block

тѕмси

Thermal Sensing Micro Circuit Unit

TSN

Time-Sensitive Networking

ΤТ

Transaction Translator

TTC

Transmit Threshold Control

τυ

Transfer Unit

ТΧ

Transmitter

TXQEN

Transmit Queue Enable

υ

UART

Universal Asynchronous Receiver/Transmitter UI Unit Interval USB Universal Serial Bus UTMI USB2.0 Transceiver Macrocell Interface

V

VBID

Vertical Blanking ID VC Virtual Channel VDEC Video Decoder

VENC

Video Encoder VIC Vectored Interrupt Controller VLIW Very Long Instruction Word VP6 Tensilica Vision Processor 6 VPP Video Processing Pipe VRR Variable Refresh Rate VSYNC Vertical Synchronization

W

WDT

Watchdog Timer WEL Write Enable Latch WIP Write in Progress WPE Warp Engine WRR Weighted Round Robin

Χ

xHCl

Extensible Host Controller Interface XIP eXecute in Place XOFF Transmit Off XON Transmit On

Ζ

ZLP

Zero Length Packet

3 Features Description

The MT8370 device is a highly-integrated, powerful platform designed for a wide range of Artificial Intelligence (AI) and Internet of Things (IoT) use cases requiring high-performance edge processing, advanced multimedia and connectivity capabilities, multiple high-resolution cameras, connected touchscreen displays, and use of a multi-tasking High-Level Operating System (HLOS).

The highly-capable octa-core application processor utilizes the Arm® DynamIQ[™] technology by combining highperformance Cortex-A78 and power-efficient Cortex-A55 cores, equipped with Arm Neon[™] engine. The application processor offers the necessary processing power to support the latest OpenOS, along with its demanding applications such as web browsing, email and games. This content can be enhanced by the 2D/3D graphics accelerator (Arm Mali-G57 MC2 GPU) and then visualized on a high-resolution touchscreen display. To provide advanced multimedia applications and services such as streaming audio and video, the device features multi-standard video encoder and decoder engines, and an advanced audio subsystem.

The AI Processor Unit (APU) enables deep learning, Neural Network (NN) acceleration, and Computer Vision (CV) applications. The latter, combined with the up to 32MP camera, can clearly and accurately perform AI-vision functions such as facial recognition, object identification, scene analysis, optical character recognition and much more.

An extensive set of interfaces, connectivity, flexible storage and memory options further enhance the capabilities of the device and give product designers freedom to customize.

3.1 Application Processor

3.1.1 Overview

The **MCUSYS** (the application processor subsystem) is responsible for running the operating system and application programs, providing different levels of power efficiency and computing power to satisfy a wide range of system power and performance requirements. It is composed of:

- A local bus fabric (CPUBIU, Central Processing Unit (CPU) Bus Interface Unit)
- An interrupt controller (GIC-600)
- A CPU cluster (DSU with the CA78 and CA55 cores)

The Cortex-A55 cores are specifically optimized for power efficiency to minimize the power consumption for daily usage scenarios and lightweight applications, while the Cortex-A78 cores are designed for performance-driven applications, and providing the best user experiences for heavy tasks.

The MCUSYS supports the DVFS (Dynamic Voltage Frequency Scaling) technology to allow the CPU to run at different frequencies and voltage configurations depending on the application requirements. Additionally, the power of each CPU core can be individually turned off when not in use. In the standby mode, the MCUSYS can be completely shut down to further reduce power consumption.

3.1.2 Features

- 4 × Arm Cortex-A55 cores with 32KB I/D cache and 128KB L2 cache
- 2 × Arm Cortex-A78 cores with 64KB I/D cache and 256KB L2 cache
- 2MB L3 cache
- Interrupt controller, Arm GIC (Generic Interrupt Controller)-600
- Advanced DVFS mechanism

3.1.3 Block Diagram

Figure 3-1 Block Diagram of MCUSYS

- The MCUSYS consists of
 - 4 Arm Cortex-A55 cores
 - 2 Arm Cortex-A78 CPU cores
- The cores are integrated into the DynamicIQ Shared Unit (DSU), also known as the "CPU cluster" or "cluster".
- The DSU has a snoop control unit to manage data coherency, while a 2MB L3 cache is shared with the CPU cores.
- The GIC-600 manages interrupts between the CPU cores and systems.
- The Accelerate Coherency Port (ACP) interface provides coherent transactions support between the MCUSYS and other execution engines such as the GPU (Graphics Processing Unit). The debug APB (Advanced Peripheral Bus) interface connects to the MCUSYS debug logic providing the debug functions.
- The MCUSYS utilizes the AXI (Advanced eXtensible Interface) to access system memory and devices.

3.1.4 Function Description

The CPU cluster service application execution and operation systems collaborate with the advanced DVFS mechanism to achieve a balance between power and performance for a wide range of workloads.

The CPUBIU routes transactions to dedicated memory channels, reducing path latency and improving access performance, but it does not support coherency functions. The GIC-600 supports and manages interrupts in the MCUSYS for interrupt

masking, prioritization, and security. Additionally, the debug logic of the MCUSYS supports static debugging to connect to the system via certain interfaces (e.g. via the JTAG), allowing cross-triggering of internal and external trigger events for debugging.

3.1.5 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.1.6 References

- Arm[®] Cortex[®]-A55 Core Technical Reference Manual
- Arm[®] Cortex[®]-A78 Core Technical Reference Manual
- Arm[®] DynamIQ[™] Shared Unit Revision: r4p1 Technical Reference Manual
- Arm[®] CoreLink GIC-600 Generic Interrupt Controller Technical Reference Manual

3.2 Graphics Accelerator

3.2.1 Overview

MFG (MediaTek Flexible Graphics) contains the Mali-G57 Graphics Processing Unit (GPU) and clock/reset control logic. The Mali-G57 series of GPUs process extremely complicated graphics and perform general processing tasks assigned by the main application processor.

3.2.2 Features

The Mali-G57 GPU includes the following features:

- A programmable architecture.
- An API feature set with support for shader-based and fixed-function graphics Application Programming Interfaces (APIs).
- Anti-aliasing capabilities.
- An effective core for General-Purpose Computing on GPU (GPGPU) applications.
- High memory bandwidth and low power consumption for 3D graphics content.
- Performance leading 3D graphics.
- Arm AMBA[®] 1 AXI slave interface for GPU configuration.
- 1 x 256-bit Arm AMBA 1 AXI master interface for external memory access.
- Easy integration.
- Latency tolerance.
- Compressed texture formats.
- Configurable per-core power management for enabling the optimal power and performance combination for each application.
- Coherency aware interconnects for system memory and resource sharing.
- Arm Frame Buffer Compression (AFBC) 1.3.

- 8-bit, 10-bit, and 16-bit YUV input and output formats.
- Secure processing of Digital Rights Management (DRM)-protected content.
- Level-2 cache
 - 1 × 512KB
 - 4-way set associative
 - The GPU supports these compute API standards
 - OpenCL up to 2.2
- The GPU supports these graphics API standards
 - OpenGLES 1.1, 2.0, and 3.2
 - Vulkan 1.0 and 1.1

3.2.3 Block Diagram

This diagram shows the main components and interfaces of MFG.

Figure 3-2 Block Diagram and Interface of MFG

3.3 Digital Signal Processor

3.3.1 Overview

The Digital Signal Processor (DSP) is responsible for running the operating system and application programs. It comprises:

- Single-core Cadence HiFi 5 Audio Engine DSP
- AXI3 bus interface unit (in-house MediaTek bus)
- System Power Management Controller (SPMC)

The Cadence HiFi 5 DSP is a highly optimized audio processor geared for efficient execution of audio and voice codecs and pre- and post-processing modules.

The HiFi 5 DSP is a five-slot VLIW (Very Long Instruction Word) machine that can execute up to eight 32x32-bit MACs, sixteen 32x16-bit MACs, and sixteen 16x16-bit MACs per cycle. It has the ability to issue two 128-bit loads per cycle, or one load and one store of 128 bits per cycle for the parallel loads and stores of the operand and results. The HiFi 5 DSP offers the additional floating-point precision support for enhanced audio and voice processing through an optional Single Precision Floating Point Unit (SP FPU), which can perform eight single precision IEEE-754 floating-point MACs per cycle. Since the audio and voice processing at the front-end is conducted in the frequency domain, both the floating-point and fixed-point MAC operations in the HiFi 5 DSP are enhanced to operate on complex data types.

For supporting neural network-based speech recognition algorithms, the HiFi 5 DSP provides a Neural Network Extension option that enables the hardware to perform up to thirty-two 8x16, 4x16, and 8x8-bit MACs per cycle. The multiplication operations support both signed and unsigned operands as well as operands with 4-bit precision. A few speech neural network implementations also use half-precision floating-point variables. For such networks, the HiFi 5 DSP offers a HP (Half Precision) FPU option that provides up to 16 half-precision IEEE-754 floating point MACs per cycle. The instruction set is designed to address both dot products and convolution operations to cover several types of neural network implementations used in the speech recognition.

3.3.2 Features

- Single-core Cadence HiFi 5 DSP operates at 720 MHz (0P75V), including:
 - 64KB L1 I-cache
 - 128KB L1 D-cache
 - Data retention not supported by Pre-fetch buffer, I-cache, D-cache, ITag, and DTag JTAG (Joint Test Action Group)
 - 25 interrupts configurable by intc
 - Supports the SPM to control power sequence.
- Peripheral:
 - 512KB L2TCM
 - One UART
 - Five mailboxes
 - Ten semaphores
 - One system timer
 - One watchdog timer

3.3.3 Block Diagram

Figure 3-3 HiFi 5 DSP Block Diagram

3.3.4 Function Description

3.3.4.1 Pipeline Stages

The DSP consists of a seven-stage pipeline with two-cycle latency for both the instruction-memory fetch and the datamemory fetch.

•	Pipeline length	7
•	Instruction memory fetch latency	2
•	Cycle of execute stage	1
•	Cycle of modify stage	3
•	Cycle of write-back stage	4

3.3.4.2 Layer 1 Cache Controller

The host processor of the DSP includes a cache controller that has a 64KB instruction cache and a 128KB data cache implemented to improve the code/data fetch performance.

To further enhance cache performance, the data cache supports write-back operations. Additionally, the data cache can be switched programmatically between write-back and write-through modes.

Both the instruction cache and data cache support dynamic-cache-way-disable. This feature allows for the independent disabling and re-enabling of cache ways in both caches. It also facilitates power saving, as you can clean cache ways before disabling them and initialize cache ways when enabling them. When a cache way is disabled, the cache memory block from service is removed, and therefore the total cache capacity is reduced by "1/(number of ways in service)".

- Instruction cache details
 - Instruction cache size in bytes
 65536
 - Instruction cache ways
 - Instruction cache line size bytes 128
 - Dynamic way disable
 Supported

4

- Data cache details
 - Data cache size in bytes 131072
 - Data cache ways
 4
 - Data cache line size bytes
 128
 - Data cache write-back
 Supported
 - Dynamic way disable
 Supported

3.3.4.3 Memory Management

The Memory Protection Unit (MPU) provides memory protection functionality with a smaller footprint than the Linuxcompatible Memory Management Unit (MMU) while offering greater flexibility and features than the Region Protection Unit (RPU).

The features of MPU are as follows:

- A configurable number (16 or 32) of entries that determine the regions
- A configurable address granularity (minimum: 4KB)
- 12 choices of access-rights settings per region
- More than 200 different memory-type choices per region, including the ability to specify the internal L1 cache behavior, which is different from an external, AXI or PIF (Processor Interface), cache behavior (attributes)
- Identity map implementation: No address translation
- Runtime modifiable foreground memory map
- Static background memory map
- Unified instruction and data memory maps

3.3.4.4 Interrupt

The DSP supports 32 maskable interrupts with four priority levels.

Interrupt	Туре	Level	BInterrupt Pin	Note
0	Level	1	0	UART
1	Level	1	1	spm2adsp_wakeup

Table 3-1 INTC Interrupt

© 2023-2024 MediaTek Inc. All rights reserved.

Interrupt	Туре	Level	BInterrupt Pin	Note
2	Level	1	2	Mailbox
3	Level	1	3	dsp_timer_irq[1]
4	Level	1	4	dsp_timer_irq[2]
5	Level	1	5	sw_int 0
6	Edge	1	6	sw_int NEW
7	Edge	1	7	sw_int 2
8	Level	2	8	I2c_irq
9	Level	2	9	asrc0_irq
10	Level	2	10	asrc1_irq
11	Level	2	11	asrc2_irq
12	Level	2	12	asrc3_irq
13	Level	2	13	os_timed_irq
14	Level	2	14	DMA irq
15	Level	2	15	audiosys_irq
16	Level	3	16	HiFi5_wdt_int
17	Level	3	17	no used
18	Level	3	18	Timer_merge_irq
19	Level	3	19	scp_irq
20	Level	4	20	no used
21	Level	4	21	latency_moniter_irq
22	Level	4	22	bus_tracker_irq
23	Edge	3	23	wakeup_source_irq
24	Edge	3	24	infra_bus_hang_timeout_irq

3.3.5 Theory of Operations

- HiFi 5 DSP User Guide
- Xtensa LX7 Microprocessor Data Book

3.3.5.1 Debug Monitor Register

The DSP contains a set of debug monitor registers that enable the monitoring of the internal signals within the DSP core for debugging purposes. For more information, please refer to Xtensa Debug Guide.

Signal	I/O	Description	Dsp0cfg_reg		
PDebugEnable	Input	Trace enable	PDebugBus0[0]		
PDebug_latch_en			PDebugBus0[4]		
PDebugData[31:0]	Output	Trace debug data	PDebugData		
PDebugInbPIF[7:0]	Output	Inbound PIF transaction information	PDebugBus1[31:24]		

Table 3-2 Debug Signals

Signal	I/O	Description	Dsp0cfg_reg
PDebugOutPIF[7:0]	Output	Outbound PIF transaction	PDebugBus1[23:16]
		information	
PDebugInst[31:0]	Output	Instruction information	PDebugInst
PDebugLS0Stat	Output	LSU0 status	PDebugLS0Stat
PDebugLS1Stat	Output	LSU1 status	PDebugLS1Stat
PDebugPC	Output	Trace program counter	PDebugPC
PDebugPrefetchL1Fill[3:0]	Output	Prefetch L1 fill information	PDebugBus0[19:16]
PDebugPrefetchLookup[7:0]	Output	Prefetch lookup information	PDebugBus1[15:8]
PDebugStatus[7:0]	Output	Trace status information	PDebugBus1[7:0]

3.3.6 Power Management

3.3.6.1 Constraint to Access DSP Configuration Register

The DSP configuration register is in the Always-On power domain.

3.3.6.2 Sleep and Wakeup

- 1. After the *WAITI* instruction is completed, the DSP sets the interrupt level in the *PS.INTLEVEL* register to the value encoded by the instruction.
- 2. The processor then waits for all processor memory interfaces to become idle and asserts the DSP_PWaitMode signal.
- 3. During this time, all processor operations are suspended until a non-masked interrupt occurs.

Note:

• Please refer to Xtensa LX7 Microprocessor Data Book 22.5.

3.3.7 Programming Guide

3.3.7.1 Basic Setting

- HiFi 5 DSP User Guide
- Xtensa LX7 Microprocessor Data Book

3.3.7.2 Basic Setting Flow

Basic Setting

- 1. Load instruction code and data code to 0x10D0_0000~0x10D7_FFFF (512KB L2TCM)
- 2. Change the DSP clock to an at-speed clock, with the default speed of 26 MHz.
 - a. CLK_CFG_17[3:0] = 0x0; *CLK_CFG_UPDATE2[4] = 0x1; change clock from DSPPLL. (DSPPLL_CON1 can modify DSPPLL frequency)
- 3. PWR ON DSP PWR
- 4. Set AltResetVec to the value 0x4E100000 (If needed)

- 5. Set Initial Setting
 - a. Set StatVectorSel (0x10B8_B00C[0]0) to 1
 - b. Keep RunStall (0x10B8_000C[31]) to 1 (default)
 - c. Set DReset_sw (0x10B8_0000[4]) to 1
 - d. Set BReset_sw (0x10B8_0000[0]) to 1

6. Set Initial Setting

- a. Keep StatVectorSel (0x10B8_B00C[0]) to 1
- b. Keep RunStall (0x10B8_000C[31]) to 1 (default)
- c. Set DReset_sw (0x10B8_0000[4]) to 0
- d. Set BReset_sw (0x10B8_0000[0]) to 0
- 7. Set Reset_sw = 0x10
 - a. Keep Set StatVectorSel (0x10B8_B00C[0]) to 1
 - b. Set RunStall (0x10B8_000C[31]) to 1 (release run_stall)
 - c. Keep DReset_sw (0x10B8_0000[4]) to 0
 - d. Keep BReset_sw (0x10B8_0000[0]) to 0

3.3.8 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.3.9 Reference

- HiFi 5 DSP User Guide
- Xtensa LX7 Microprocessor Data Book
- Xtensa Debug Guide

3.4 Al Processor Unit

3.4.1 Overview

The MediaTek AI Processor Unit System (APUSYS) significantly enhances multimedia performance by exhibiting remarkable computing capabilities. The key components of the APUSYS are:

- Single-core programmable Tensilica Vision Processor 6 (VP6), for both the traditional Computer Vision (CV) algorithms and Neural Network (NN) algorithms.
- Single-core MediaTek Deep Learning Accelerators (MDLA), for the NN algorithms.

The hardware design is specifically optimized for job allocation between the NN (MDLA) and CV (VP6) engines, resulting in efficient performance. The External Direct Memory Access (EDMA) engine supports data movement and format conversion.

For external interface parts, there are four AXI buses to access the external DRAM. The APUSYS exchanges data with other subsystems through the external DRAM.

3.4.2 Features

- The VP6 supports both the AI and CV.
 - Per core configuration
 - L1 Instruction memory per core: 64 KB + 128 KB cache
 - L1 data memory per core: 128 KB + 128 KB
 - vFPU to support high-precision requirement applications
 - Top performance:
 - Fix 8: 0.43 TOPS
 - Fix 16: 0.11 TOPS
 - FP16: 0.06 TOPS
 - FP32: 0.03 TOPS
- The MDLA supports high-computation demands NN applications.
 - Peak power reduction
 - Top performance:
 - Fix 8 × Fix 8: 2.8 TOPSFix 16 × Fix 8: 1.4 TOPS
 - Fix 16 × Fix 16: 0.7 TOPSFP 16/BF 16: 0.7 TOPSSimultaneous pipelined hardware function block (CONV/ACT/POOL/EWE/BILINEAR)
 - Enhancement of layer fusion to further reduce DRAM memory bandwidth
 - Supports Android NN asymmetric quantized data format.
 - Supports compressed weight to reduce DRAM bandwidth.
 - Supports Android NN asymmetric quantized data format.
 - Supports compressed weight to reduce DRAM bandwidth.
- The EDMA supports data movement and data format conversion.
 - Format conversion and data movement between memories

3.4.3 Block Diagram

Figure 3-4 Block Diagram and Interface of APUSYS

3.4.4 Function Description

3.4.4.1 VP6

3.4.4.1.1 Overview

The Tensilica Vision-P6 DSP (VP6) is a programmable AI processor unit with high-performance and high-flexibility for vision applications. There is one VP6 in APUSYS.

Each VP6 has a 5-slot Very Long Instruction Word (VLIW) architecture. To achieve high-performance computing, it utilizes the multiply-accumulate (MAC) unit to compute up to 256 8 bits x 8 bits MACs in one cycle. To achieve high-throughput bandwidth for computing, it uses up to "2-slot 64-byte loads" or "1-slot 64-byte load and 1-slot 64-byte store" to access 128-byte data bandwidth in one cycle.

Each VP6 is a vector Single Instruction Multiple Data (SIMD) DSP. For high-flexibility programming, it supports 64-way 8-bit operations, 32-way 16-bit operations, and 16-way 32-bit operations in fixed-point format. It also supports 16-way single-precision operations and 32-way half-precision operations in floating-point format.

Each VP6 supports special features. The Scatter/Gather operations enhance random accessing to local Data RAM, and the histogram operations accelerate binning function.

3.4.4.1.2 Features

Table 3-3 shows the features of a single VP6.

Feature	Configuration
Instruction RAM	64KBytes
Instruction Cache	128KBytes
Data RAM	256KBytes
	8 bits x 8 bits: 256 (64-way multiply or multiply-accumulate quad operations)
Number of MACs	8 bits x 16bits: 128 (64-way multiply or multiply-accumulate pair operations)
in fixed-point operations	16bits x 16bits: 64 (32-way multiply or multiply-accumulate pair operations)
	32 bits x 16 bits: 16 (16-way multiply or multiply-accumulate operations)
Number of MACs	16 bits x 16 bits: 32 (32-way multiply or multiply-accumulate operations)
in floating-point operations	32 bits x 32 bits: 16 (16-way multiply or multiply-accumulate operations)
Half-precision operations	32-way half precision vector FPU
Single-precision operations	16-way single precision vector FPU
Histogram operations	Native histogram instructions
Scatter/Gather operations	32-way 16-bit vector elements accessing to local Data RAM
iDMA	64 outstanding re-order buffers
User TIE	MTK_TIE2APB: Accessing ability to APB (Advanced Peripheral Bus)
lote:	

Note:

• TIE denotes "Tensilica Instruction Extension".

• The User TIE "MTK_TIE2APB" is used to support APB master in Vision-P6 DSP. The programmer can use API functions such as "IPU_SendAPBWrite(data,addr)" and "IPU_SendAPBRead(data,addr)" to use APB transaction to access configuration registers.

3.4.4.1.3 Block Diagram

Figure 3-5 shows the block diagram of a single VP6.

Figure 3-5 VP6 Block Diagram

© 2023-2024 MediaTek Inc. All rights reserved.

3.4.4.2 MDLA

3.4.4.2.1 Overview

The MediaTek Deep Learning Accelerator (MDLA) comprises three primary components and handles the following tasks:

- **Command engine (CMDE)**: Decodes commands and maps them to the corresponding registers. It receives input commands and converts them into a format that is interpretable by other components of the MDLA.
- **Convolutional engines** and **non-convolutional engines**: Operate on the input to efficiently generate the desired tensor data.

3.4.4.2.2 Features

- Convolutional engine
 - Convolutional 2D
 - Depth-wise convolutional
 - Fully connected
 - Transpose convolutional
 - Dilated convolutional
- Element-wise engine
 - Element-wise functions:
 - BN, Mul, Add, Sub, Max, Min, Abs, Neg, Sqr, IN_sub
 - Activation functions:
 - ReLu, ReLu1, ReLu6, PreLu, Sigmoid, Tanh, Elu, GeLu, Exp, Rcp, Sqrt, Mish, Rsqrt
- Pool engine
 - Pooling functions:
 - Global pooling, Local pooling
 - Resize function
 - Resize bilinear, resize nearest (nearest-neighbor interpolation), resize nearest floor
- Transpose engine
 - C-W transpose
 - Depth2Space
 - Space2Depth
- Store engine: Reshape

3.4.4.2.3 Block Diagram

Figure 3-6 Key Block Diagram of MDLA

3.4.4.3 EDMA

3.4.4.3.1 Overview

The External Direct Memory Access (EDMA) serves the exchange and conversion of data formats between the APUSYS and other subsystems or engines. This allows the computing engines, such as the MDLA and VP6, to avoid the negative effects of inconsistent data formats from other subsystems. Consequently, the exchanged data format within the APUSYS is more uniform and efficient.

3.4.4.3.2 Features

- Normal functions:
 - Data copy
 - Fill constants
- Numeric conversion
 - F16 to F32
 - F32 to F16
- Format conversion
 - RGGB to Bayer
 - Bayer to RGGB

3.4.5 Theory of Operations

Figure 3-7 APU Theory of Operation Construction

To enable effective uses of the APU, public frameworks provide a reliable foundation, on which software can be built. These frameworks offer a structured approach to application development and are designed to simplify the process. Several open-source NN frameworks, including TensorFlow, PyTorch, and ANN, are used to construct Software Development Kits (SDK), which provide APIs and libraries that allow developers to access and control both the MDLA and VPU hardware.

3.4.6 Programming Guide

NeuroPilot is a renowned software framework developed by MediaTek. It incorporates various public frameworks for application development, including the VPU and MDLA software stacks. Additionally, the EDMA is utilized for efficient data transmission. While the VPU and MDLA begin their functionality through the thread dispatcher to instruction buffer or CMDE, programming is solely possible through the MediaTek SDK. For more detailed information, please refer to the NeuroPilot website.

3.5 System Companion Processor (SCP)

3.5.1 Introduction

System Companion Processor (SCP) is a microprocessor subsystem with a two-core MDSP RV55 processor and peripherals. The SCP subsystem is designed to handle specific tasks for SoC, sensor control, and the future extension tasks.

3.5.2 Features

SCP includes the following features:

- 32-bit MDSP RV55 microprocessor
 - Operating frequency up to 832 MHz
 - Memory Protection Unit (MPU)
 - Floating Point Unit (FPU)
 - 32KB I-Cache and 32KB D-Cache
 - AXI and prefetch
- Built-in 1MB L2 Tightly-Coupled Memory (L2TCM)
 - Instruction memory and data memory share the 1MB TCM.
- SCP internal bus system
 - An AXI Master interface to access L2TCM and bus fabric
 - An AXI Master interface to access SoC-site INFRA and DRAM
 - An AXI Master interface to access ADSP shared L2TCM
 - An AXI Slave interface for APMCU to access the SCP peripherals and configuration registers
- Peripheral integrated system
 - There are 6 sets of 32-bit time counters (Timers) for each RV55 core. The clock source for each timer can be configured independently.
 - 8 GPIO pins for external communication
 - External Interrupt Controller (EINT) provides de-bounce (anti-glitch) and edge detection functions for integrating external interrupt signals.
 - Internal Interrupt Controller (INTC) provides interrupt mask, interrupt group, and asynchronous clock domain protection for accessing RV55 VIC (Vectored Interrupt Controller).
 - 1 set of I2C
 - 1 set of I3C
 - 3 sets of SPI-M (master)
 - 2 sets of UARTs
 - 2 sets of DMA, which consist of 4-channel full-sized DMA
 - Direct path to PMIC (Power Management IC) wrapper
 - Mailbox (MBOX) and Inter-Process Communication (IPC) support for communication between SCP and APMCU.
 - Watchdog Timer (WDT) for SCP exception control to inform APMCU via interrupts (e.g. After SCP WDT times out, interrupts are asserted to APMCU, which receives WDT interrupts and then resets SCP for debugging purposes).

3.5.3 Block Diagram

Figure 3-8 shows the detailed block diagram of the SCP subsystem as well as the connection interfaces with other modules (e.g. APMCU) or external IO pins. Some SCP major features are introduced below:

- Direct Memory Access (DMA)
 - DMA is useful when CPU (RV55 or APMCU) cannot keep up with the rate of data transfer, or when CPU needs to
 operate while waiting for a relatively slow I/O data transfer.
 - − For memory-to-memory (e.g. L2TCM \leftrightarrow L2TCM) data moving or memory-to-peripheral (e.g.L2 TCM \leftrightarrow I2C/I3C) data transmissions.
- L2TCM
 - The total size of L2TCM is 1MB. The program code and data for SCP are downloaded to L2TCM and the code is fetched directly from this memory space.

- It stores the data received from serial communication interface (e.g. I2C, I3C, UART, SPI, and GPIO) and loads the data transmitted to the serial communication interface. Therefore, APMCU or RV55 can require the data by accessing this memory space.
- Interrupt Controller (INTC and EINT)
 - The INTC module is used to pre-integrate all interrupt sources into RV55 VIC, providing mask/unmask control and polarity configuration for each interrupt signal. It can also group similar interrupts together.
 - The EINT module is used for the de-bounce (anti-glitch) and edge detection functions for stabilizing the external IO interrupt source. It is located ahead of INTC.
- Serial Communication interfaces (e.g. I2C, I3C, SPI-M, UART, GPIO)
 - Several kinds of serial communication interfaces and general purpose I/O are provided to connect with external devices or to print some information logs.
- SCP mailbox (SCP < > APMCU)
 - Virtual addresses are allocated to L2TCM physical address function in the SCP mailbox. Therefore, the APMCU can write down the message to inform each other that the programmable task has been completed or has exchanged data.
 - While the message is present in L2TCM, write the command into the mailbox command register. This mechanism triggers an interrupt to inform APMCU or RV55 that there are messages present in the corresponding L2TCM (physical address).
- Clock Controller
 - The controller includes clock source MUX, clock divider, and clock gate. According to the DVFS table and current application scenario, it can be programmable to generate the SCP internal clocks.
- Timer/Watchdog Timer (WDT)
 - Timer is a counter with programmable time intervals. You can set the counter initial value and enable the timer.
 When the timer counts down to zero, a timeout interrupt is generated to inform RV55.
 - A watchdog timer is an electronic timer that is used to detect and recover from RV55 malfunctions. During the
 normal operation, the RV55 regularly resets the watchdog timer to prevent a timeout. If, due to a hardware fault
 or a program error, the computer fails to reset the watchdog, the timer elapses and generates a timeout interrupt
 to inform APMCU that RV55 stops working.

Figure 3-8 SCP Subsystem Block Diagram

3.5.4 Clock Generation

3.5.4.1 Clock Structure for RV55 and Bus

The clock source of the SCP subsystem is provided by HF_FSCP_CK, CLK_32K, CLK_26M, or CLK_ULPOSC (the four clocks are configured by the CLK_SW_SEL control register CR setting. Bus, RV55, and IP bus interface clock are controlled by the divider selection (MUX) control register and clock gating (CG) control register The SCP clock structure is as Figure 3-9 shows.

Note:

• When switching clock sources, make sure that the destination clock source exists.

Figure 3-9 SCP Clock Structure

The SCP clock control is also responsible for SCP sleep control. When RV55 enters the idle state, which means it is waiting for interrupts, the clock controller automatically changes the SCP system clock to the slow clock of 32 kHz or 26 MHz. The SCP system resumes operations (the clock returns to the fast clock) after the IRQ (Interrupt Request) triggers the INTC, which is introduced in Section 3.5.8.

3.5.4.2 Clock Structure for Low Speed Peripherals and IO

In order to comply with the low speed IO protocol, the peripherals need to operate at the special clock period, I2C bclk, I3C bclk, SPI bclk, or UART bclk. The clock divider selection control register and the clock gating (CG) control register of low speed peripherals and IO are shown in Figure 3-9.

3.5.4.3 Clock Structure Programming Outline

Step	Sequence	REG_Name	REG_Value	Address
1	Select SCP system clock source	CLK_SW_SEL	User defined	SCP/AP Base Address + 0x21000
2	Select SCP system clock divider	CLK_DIV_SEL	User defined	SCP/AP Base Address + 0x21024
3	Enable SCP system clock gating (default off)	CLK_CG_CTRL	User defined	SCP/AP Base Address + 0x21030
4	Select peripherals clock source	I2C_BCLK_CK_SEL SPI_BCLK_CK_SEL UART_BCLK_CK_SEL I3C_BCLK_CK_SEL TMR_BCLK_CK_SEL	User defined	SCP/AP Base Address + 0xC1050(I2C) SCP/AP Base Address + 0xC104C(SPI) SCP/AP Base Address + 0xC1044(UART) SCP/AP Base Address + 0xC1050(I3C) SCP/AP Base Address + 0xC1048(TMR)
5	Enable peripherals clock gating (default off)	CLK_CG_CTRL	User defined	SCP/AP Base Address + 0xC1030

Table 3-4 Clock Selection Programming Outline

3.5.5 MCUSYS (RV55)

The MRV55E001 is a low power DSP for sensor/voice/audio applications. The ISA (Instruction Set Architecture) is based on free and open ISA "RISC-V" and customized MediaTek proprietary DSP instructions for differentiation. MD32RV is designed with the necessary peripherals for embedded applications. It consists of processor core, level 1 memory subsystem, and memory protection unit.

The processor features:

- 32-bit integer core
- Single precision FPU
- I/D L1 cache
- Memory protection unit
- AXI bus interface
- Vectored Interrupt Controller (VIC)
- 32-bit down count timer
- Performance monitor
- JTAG embedded ICE (In-Circuit Emulator)
- APB debug interface
- Debug cross-trigger interface

MD32RV core is a 32-bit integer core and single-precision FPU:

RISC-V compatible instruction set

© 2023-2024 MediaTek Inc. All rights reserved.

- RV32 Int/Mul/Atomic/Floating
- Privilege mode
- Standard control and status registers
- Standard interrupt and exception
- Little endian
- The external interface for MD32RV processor contains:
 - Instruction AXI bus and Data AXI bus (AMBA 3 AXI protocol)
 - The APB interface can be used to debug the software through an on-chip bus
- Supports conventional JTAG ICE for run control and debug, and depends on configuration
- 16 interrupt sources for external devices to trigger interrupt requests (need to collocate with INTC group function)

Interface:

- System Clock and Reset: CLK/RST
- Interrupt: External, Fast, SysTimer Interrupts
- Debug interface: JTAG, Debug, APB, Cross-Trigger
- Performance and Debug Monitor: Output PMU, Core status for monitor, CG/Halt status
- Pre-defined Region: Low power access TCM/CACHE
- AXI
- SRAM (Static Random-Access Memory): ICACHE/DCACHE/TBUF

Micro arc:

- 6-stage pipeline, IF/PD/ID/E1/E2/WB
- 3 execution pipelines (2 Integer engines and 1 FPU engine)
- Dynamic branch predication
- Dual MACs
- Single load/store
- Non-blocking hardware divider
- Halt for interrupt instruction

Table 3-5 MCUSYS Function Block List

Name	МСО	L2TCM	SYSRAM	ROM	Other Features
SCP subsystem	RV55x2 @832MHz	Total 1MB L2TCM	No	No	MPU, SWD, FPU

For SCP boot-up, the image must be loaded into L2TCM by other application processors (APMCU). A basic boot sequence of SCP MCUSYS from the APMCU point of view is as follows:

- 1. Configure clock source and frequency for RV55 in SCP
- 2. Power on L2TCM of RV55
- 3. Download the instruction code and data of RV55 to L2TCM
- 4. Release RV55 software reset
- 5. RV55 starts to fetch code from L2TCM
- 6. SCP hardware initializations for submodules (e.g. UATR, DMA, I2C, I3C, SPI)

Among which:

- Steps A to D are performed by APMCU.
- Steps E and F are performed by RV55 in SCP.

3.5.6 JTAG

SCP RV55 supports two kinds of interfaces for CM4 debugging. One is the dedicated JTAG from Pinmux, and the other is from APMCU debug top DAP interface.

3.5.7 Internal Bus Fabric

The SCP bus fabric provides interconnection between IP cores. This system interconnect consists of the AXI bus fabric, AHB (Advanced High-performance Bus) fabric, and APB fabric, which are shown in Figure 3-8. The AXI bus supports the AXI master (RV55 and APMCU), while the AHB bus supports the AHB master (DMA, SPI-M) and AHB slave (APB fabric) for high bandwidth data transfer. However, for low power applications, the peripheral and SCP control register are connected to the APB fabric.

3.5.8 Interrupt Controller

3.5.8.1 Internal Interrupt Controller (INTC)

The Interrupt Controller (INTC) is located ahead of RV55 VIC to provide flexibility in handling interrupt requests. The SCP clock controller also needs the Sleep IRQ to trigger the clock resume finite-state machine. There are four features shown as below and the block diagram is illustrated in Figure 3-10.

- Enable/Disable (Mask) control for each interrupt request Management of valid interrupts
- Configure interrupt polarity
- Change the interrupt polarity to meet the polarity requirement of RV55
- Synchronize the interrupt signal in the RV55 clock domain
- Solve the clock domain crossing issue of interrupt signals
- Group module to group IRQs into 16 groups, which trigger RV55 VIC

Figure 3-10 INTC Block Diagram

3.5.8.2 Interrupt Source

Interrupt signals for INTC module are listed in Table 3-6.

	Table 3-6 IRQ
NVIC No.	Interrupt Source
0	scp_gipc_in_0
1	scp_gipc_in_1
2	scp_gipc_in_2
3	scp_gipc_in_3
4	spm2scp_irq
5	scp_cirq_event_b
6	eint_irq_core0/1
7	pmic2scp_irq
8	irq_b_u_UART
9	irq_b_u_UART1
10	irq_b_u_I3C0
11	irq_b_u_l2C0
12	TSIP_AXI_tracker_bus_dbg_tracker_irq_b
13	clk_ctrl_irq_u_CLK_CTRL
14	data_valid_irq_u_VOWIF
15	timer0_irq_u_scp_timer_core0/1
16	timer1_irq_u_scp_timer_core0/1
17	timer2_irq_u_scp_timer_core0/1
18	timer3_irq_u_scp_timer_core0/1
19	timer4_irq_u_scp_timer_core0/1
20	timer5_irq_u_scp_timer_core0/1
21	os_timer_irq_u_scp_timer_core0/1
22	uart_rx_irq_core0/1
23	uart1_rx_irq_core0/1
24	dma_irq_b_core0/1
25	scp_audio_irq_b
26	scp_misc_irq_in_vdec_int_line_cnt_irq_b
27	adsp_irq_b
28	cpu_tick_irq_u_scp_timer_core0/1
29	spi0_irq_b
30	spi1_irq_b
31	spi2_irq_b
32	new_infra_sys_cirq_b
33	dbg_irq
34	scp_misc_irq_in_gce_irq_b
35	scp_misc_irq_in_mdp_gce_irq_b
36	scp_misc_irq_in_vdec_irq_b

Table 3-6 IRQ

© 2023-2024 MediaTek Inc. All rights reserved.

NVIC No.	Interrupt Source
37	wdt_irq_core0/1
38	scp_misc_irq_in_vdec_lat_irq_b
39	gce_secure_irq_b
40	gce1_secure_irq_b
41	scp_infra_irq
42	clk_ctrl_irq_core0_u_CLK_CTRL
43	clk_ctrl_irq_2_core0_u_CLK_CTRL
44	clk_ctrl_irq_2_u_CLK_CTRL
45	scp_gipc_in_4
46	peribus_timeout_irq
47	infrabus_timeout_irq
48	scp_met_irq[0]
49	scp_met_irq[1]
50	scp_met_irq[2]
51	scp_met_irq[3]
52	ap_wdt_event
53	I2tcm_sec_vio
54	cpu_tick1_irq_u_scp_timer_core0
55	vow_data_in_irq
56	i3c0_ibi_wake
57	i2c0_ibi_wake
58	scp_misc_irq_in_venc_irq_b
59	apu_engine_irq
60	mbox_irq_0
61	mbox_irq_1
62	mbox_irq_2
63	mbox_irq_3
64	mbox_irq_4
65	clk_sys_req_irq_core0/1
66	bus_req_irq_core0/1
67	apsrc_req_irq_core0/1
68	apu2scp_mbox_irq
69	devapc_TSIP_AO_wrapper_secure_vio_irq_b
70	scp_misc_irq_in_camsys_irq_b_29
71	scp_misc_irq_in_camsys_irq_b_28
72	scp_misc_irq_in_camsys_irq_b_5
73	scp_misc_irq_in_camsys_irq_b_4
74	scp_misc_irq_in_camsys_irq_b_3
75	scp_misc_irq_in_camsys_irq_b_2
76	smi_larb7_irq_b_x1
77	wpe_vpp0_wpe_int_b_x1
78	dp_tx_irq

© 2023-2024 MediaTek Inc. All rights reserved.

NVIC No.	Interrupt Source
79	edp_tx_irq
80	vpp0_irq_b[0]
81	vpp0_irq_b[12]
82	vpp0_irq_b[14]
83	msdc2_irq_b
84	scp_misc_irq_jpegenc_irq_b
85	scp_misc_irq_jpegdec_irq_b
86	scp_misc_irq_hdmitx_int_x
87	scp_misc_irq_cec_int
88	i2c_irqb[7]
89	i2c_irqb[8]
90	i2c_irqb[9]
91	i2c_irqb[10]
92	i2c_irqb[11]
93	i2c_irqb[12]
94	i2c_irqb[13]
95	infra_iommu_slow_bank0
96	infra_iommu_slow_bank1
97	infra_iommu_slow_bank2
98	infra_iommu_slow_bank3
99	infra_iommu_slow_bank4
100	vdo0_top_irq_b_x1[0] (ovl0)
101	vdo0_top_irq_b_x1[1] (wdma0)
102	vdo0_top_irq_b_x1[2] (rdma0)
103	vdo0_top_irq_b_x1[8] (dsi0)
104	vdo0_top_irq_b_x1[9] (dsc_core0)
105	vdo0_top_irq_b_x1[18] (dsi1)
106	vdo0_top_irq_b_x1[19] (dsc_core1)
107	vdo0_top_irq_b_x1[21] (dpintf0)
108	vdo0_top_irq_b_x1[22] (mutex)
109	mmsys_top_irq_b_x1[0](mutex)
110	mmsys_top_irq_b_x1[1](rdma0)
111	mmsys_top_irq_b_x1[2](rdma1)
112	mmsys_top_irq_b_x1[5](rdma4)
113	mmsys_top_irq_b_x1[6](rdma5)
114	mmsys_top_irq_b_x1[25](merge4)
115	mmsys_top_irq_b_x1[29](dpi0)
116	mmsys_top_irq_b_x1[30](dpi1)
117	mmsys_top_irq_b_x1[31](dpintf)
118	vppsys1_irq_b_x1[8](rdma2)
119	vppsys1_irq_b_x1[9](rdma3)
120	vppsys1_irq_b_x1[32](wrot2)

© 2023-2024 MediaTek Inc. All rights reserved.

NVIC No.	Interrupt Source	
121	vppsys1_irq_b_x1[33](wrot3)	
122	vppsys1_irq_b_x1[37](mutex)	

3.5.8.3 INTC Programming Outline

Table 3-7 INTC Programming Outline

Step	Sequence	REG_Name	REG_Value	Address
1	Change IRQ polarity if needed	IRQ_CTRL_POL	User defined	SCP/AP Base Address +
1				0x32030/0x32034/0x32038/0x3203C
2-1	Enable IRQ to RV55	IRQ_CTRL_EN	User defined	SCP/AP Base Address +
				0x32020/0x32024/0x32028/0x3202C
2-2	Enable IRQ as RV55 wakeup event	IRQ_CTRL_SLP	User defined	SCP/AP Base Address +
2-2				0x32040/0x32044/0x32048/0x3204C
2-3	Group IRQs as RV55 IRQ (16 groups)	IRQ_CTRL_GRP	User defined	SCP/AP Base Address + 0x32080 ~
				0x3217C

3.5.8.4 External Interrupt Controller (EINT)

There are 8 shared multi-function pins, which can be programmed as the external interrupt sensing pins for connecting external triggering signals to the SCP EINT module. There are de-bounce (anti-glitch) and edge detection functions used to stabilize the external interrupt source, which are located ahead of INTC. The block diagram is illustrated in Figure 3-11.

Figure 3-11 EINT Block Diagram

3.5.8.5 EINT Programing Outline

Step	Sequence	REG_Name	REG_Value	Address			
1	Change the pinmux function mode to support SCP_EINT	N/A	N/A	N/A			
2	Change EINT input polarity if needed	EINT_POL_SET	User defined	SCP/AP Base Address + 0x2D340			
3-1	Select which EINT input will be OR to RV55 core0	EINT_DOEN	User defined	SCP/AP Base Address + 0x2D400			

Step	Sequence	REG_Name	REG_Value	Address
3-2	Select which EINT input will be OR to RV55 core1	EINT_D1EN	User defined	SCP/AP Base Address + 0x2D420
4	Set each EINT input debounce	EINT_DBNC_SET	User defined	SCP/AP Base Address + 0x2D600 ~ SCP/AP Base Address + 0x2D61C
5	Enable EINT input	EINT_MASK_CLR	User defined	SCP/AP Base Address + 0x2D100

3.5.9 Timer

Timer is a countdown counter with programmable time intervals. You can set the counter initial value. When the timer counts to zero, it triggers a timeout interrupt to inform RV55. The block diagram is shown in Figure 3-12.

Figure 3-12 SCP Timer Block Diagram

You can select different clock sources (32 kHz, 26 MHz mclk and bclk) to determine the clock period. You can also set the counter initial value to create a time interval. When the timer setup is complete, CM4 can enable the timer to start the counter. The waveform is as Figure 3-13 shows.

Figure 3-13 SCP Timer Interrupt Event

While the counter counts to the stop value, the timer triggers an interrupt signal to inform CM4. CM4 needs to give an interrupt clear command to restart the timer.

3.5.9.1 Timer Programming Outline

Table 3-9 Timer	Programming Outline
-----------------	---------------------

Step	Sequence	REG_Name	REG_Value	Address
1	Disable timer and select the		User defined	Core0: SCP/AP Base Address + 0x330n0
1	clock source	TIMERn_EN	User defined	Core1: SCP/AP Base Address + 0x430n0
2	2 Set timer reset value TIMERn_RST_VAL User defined	Core0: SCP/AP Base Address + 0x330n4		
2		TIMERIL_K31_VAL	User denned	Core1: SCP/AP Base Address + 0x430n4
3	3 Set timer IRQ enable TIMERn_IRQ_CTRL User defined	Core0: SCP/AP Base Address + 0x330nC		
5			Oser denned	Core1: SCP/AP Base Address + 0x430nC
4	Enable timer TIMERn_EN User defined	Liser defined	Core0: SCP/AP Base Address + 0x330n0	
4			Oser denned	Core1: SCP/AP Base Address + 0x430n0

3.5.10 WDT

A watchdog timer is an electronic timer that is used to detect and recover from RV55 malfunctions. During normal operations, the RV55 regularly resets the watchdog timer to prevent a timeout. If, due to a hardware fault or program error, the RV55 fails to reset the watchdog, the timer elapses and generates a timeout interrupt to inform APMCU that RV55 should cease operations. Then, APMCU may trigger a software reset to place RV55 in a safe state and restore normal system operations. The block diagram is as shown in Figure 3-14.

Figure 3-14 SCP WDT Block Diagram

The purpose of enabling APMCU and setting up SCP WDT is that the APMCU needs to detect the malfunction of RV55. In order to avoid the WDT from triggering an interrupt, RV55 needs to reset (WDT_kick_rst) WDT counter periodically.

3.5.10.1 Watchdog Timer Programing Outline

Step	Sequence	REG_Name	REG_Value	Address		
1	Enable WDT and set the reset counter value	WDT_CFG	User defined	SCP/AP Base Address + 0x30034		
2	CM4 kick WDT reset periodically	WDT_KICK	User defined	SCP/AP Base Address + 0x30038		
3	If WDT triggers, APMCU clears the WDT IRQ and resets SCP	WDT_IRQ	User defined	SCP/AP Base Address + 0x30030		

3.5.11 Semaphore

In SCP, a register-based semaphore is designed for shared resource management between two masters (APMCU and RV55). In real applications, the two masters (APMCU and RV55) may need to use a shared resource (e.g. I2C port in SCP), and you can use this register-based semaphore for privilege management over the shared resources. A master can have access to the shared resource after it takes the semaphore successfully. A master should release the taken semaphore after it has completed the control of the shared resource. As shown in Figure 3-15, there are a total of 16-bit assigned fields for source permission check. For example, suppose that bit 0 is defined as UARTO source permission. The RV55 can write a flag (1'b1) to R_SEMA_H[0] if R_SEMA_M[0] is 1'b0. Otherwise, the semaphore hardware does not allow RV55 to set R_SEMA_H[0] as 1'b1. This purpose of this process is to prevent overlapping in resource allocation.

Figure 3-15 Semaphore Block Diagram

3.5.12 GPIO

Please refer to Section 3.12.8 General-purpose Input/Output (GPIO).

3.5.12.1 GPIO Programming Outline

Step	Sequence	REG_Name	REG_Value	Address
1	Change the pinmux function mode to support	NA	NA	NA
2	SCP_GPIO Write the data to GPIO_OUT register	SCP_GPIO_OUT	User defined	SCP/AP Base Address + 0x25004
3	Change the IO direction to output	SCP_GPIO_DIR	16'hFFFF	SCP/AP Base Address + 0x25000
4	Change the IO direction to input to get the external data	SCP_GPIO_DIR	16'h0	SCP/AP Base Address + 0x25000
5	Read the data from GPIO_IN register	SCP_GPIO_IN	User defined	SCP/AP Base Address + 0x25008

3.5.13 UART

Please refer to Section 3.12.2 Universal Asynchronous Receiver/Transmitter (UART).

3.5.14 I2C and I3C

Please refer to Section 3.12.1 Inter-Integrated Circuit (I2C) and Improved I2C (I3C).

3.5.14.1 SPI Master

Please refer to Section 3.12.3 Serial Peripheral Interface Master (SPIM).

3.5.15 Memory Map of SCP Subsystem

The memory map of the SCP subsystem is shown in Table 3-12. Except areas of L2TCM, SCP registers and Private Peripheral Bus (PPB), devices in other addressing areas are actually outside the SCP modules and they need further address remapping and device APC setting (for security access) to be reached by SCP. With the help of remapping logic, the MSB [31:28] of addressing value can be extended from 4-bit wide to 6-bit wide so that the SCP can access external devices (e.g. other peripheral devices). Detailed definitions and examples of the re-mapping control registers are shown in Section 3.5.15.1.

Devices	SCP (CM	4) view	AP view		
Devices	Memory Ma	ap Address	Memory Map Address		
L2TCM 1MB	0x0000_0000	0x000F_FFFF	0x1050_0000	0x105F_FFFF	
Adsp_share_sram	0x0010_0000	0x001F_FFFF	NA		
EMI external Remap	0x0020_0000	0x002F_FFFF	0x0_4020_0000	0x0_402F_FFFF	
EMI external Remap	0x0030_0000	0x003F_FFFF	0x0_4030_0000	0x0_403F_FFFF	
EMI external Remap	0x0040_0000	0x004F_FFFF	0x0_4040_0000	0x0_404F_FFFF	
EMI external Remap	0x0050_0000	0x005F_FFFF	0x0_4050_0000	0x0_405F_FFFF	
EMI external Remap	0x0060_0000	0x006F_FFFF	0x0_4060_0000 0x0_406F_FFF		
EMI external Remap	0x0070_0000	0x007F_FFFF	0x0_4070_0000 0x0_407F_FF		
EMI external Remap	0x0080_0000	0x0FFF_FFFF	0x0_4080_0000 0x0_4FFF_FF		
INFRA external bus	0x1000_0000	0x104F_FFFF	NA		
L2TCM 1MB Backup	0x1050_0000	0x105F_FFFF	NA		
Adsp_share_sram	0x1060_0000	0x106B_FFFF			
backup	0000_0000	UX100B_FFFF	NA		
Reserved	0x1070_0000	0x1071_FFFF	NA	ł	
tmbist_ctrl	0x1072_1000	0x1072_1FFF	0x1072_1000	0x1072_1FFF	
SCP Clock ctrl	0x1072_2000	0x1072_2FFF	0x1072_2000	0x1072_2FFF	
SCP pmic_wrap_p2p	0x1072_3000	0x1072_3FFF	0x1072_3000	0x1072_3FFF	
VOWIF	0x1072_4000	0x1072_4FFF	0x1072_4000	0x1072_4FFF	
SCP_CFGREG	0x1072_5000	0x1072_5FFF	0x1072_5000	0x1072_5FFF	
GPIO	0x1072_6000	0x1072_6FFF	0x1072_6000 0x1072_6FFF		

Table 3-12 SCP Memory Map

© 2023-2024 MediaTek Inc. All rights reserved.

Devices	SCP (CM	4) view	AP view			
Devices	Memory Map Address		Memory Map Address			
UARTO	0x1072_7000	0x1072_7FFF	0x1072_7000	0x1072_7FFF		
UART1	0x1072_8000	0x1072_8FFF	0x1072_8000	0x1072_8FFF		
I3C0	0x1072_9000	0x1072_9FFF	0x1072_9000	0x1072_9FFF		
I2C0	0x1072_A000	0x1072_AFFF	0x1072_A000	0x1072_AFFF		
SPIO	0x1072_B000	0x1072_BFFF	0x1072_B000	0x1072_BFFF		
SPI1	0x1072_C000	0x1072_CFFF	0x1072_C000	0x1072_CFFF		
SPI2	0x1072_D000	0x1072_DFFF	0x1072_D000	0x1072_DFFF		
EINT	0x1072_E000	0x1072_FFFF	0x1072_E000	0x1072_FFFF		
Reserved	0x1073_0000	0x1073_0FFF	0x1073_0000	0x1073_0FFF		
SCP_CFGREG_CORE0	0x1073_1000	0x1073_1FFF	0x1073_1000	0x1073_1FFF		
SCP_DMA_CORE0	0x1073_2000	0x1073_2FFF	0x1073_2000	0x1073_2FFF		
SCP_INTC_CORE0	0x1073_3000	0x1073_3FFF	0x1073_3000	0x1073_3FFF		
SCP_TIMER_CORE0	0x1073_4000	0x1073_4FFF	0x1073_4000	0x1073_4FFF		
Debug APB CORE0	0x1073_5000	0x1073_FFFF	0x1073_5000	0x1073_FFFF		
Reserved	0x1074_0000	0x1074_0FFF	0x1074_0000	0x1074_0FFF		
SCP_CFGREG_CORE1	0x1074_1000	0x1074_1FFF	0x1074_1000	0x1074_1FFF		
SCP_DMA_CORE1	0x1074_2000	0x1074_2FFF	0x1074_2000	0x1074_2FFF		
SCP_INTC_CORE1	0x1074_3000	0x1074_3FFF	0x1074_3000	0x1074_3FFF		
SCP_TIMER_CORE1	0x1074_4000	0x1074_4FFF	0x1074_4000	0x1074_4FFF		
Debug APB CORE1	0x1075_0000	0x1075_0FFF	0x1075_0000	0x1075_0FFF		
main bus bcrm	0x1075_1000	0x1075_1FFF	0x1075_1000	0x1075_1FFF		
Main bus debug	0x1075_2000	0x1075_2FFF	0x1075_2000	0x1075_2FFF		
Bus tracker	0x1075_3000	0x1075_FFFF	0x1075_3000	0x1075_FFFF		
Reserved	0x1076_0000	0x1077_FFFF	0x1076_0000	0x1077_FFFF		
CORE0 I/D Cache	0x1078_0000	0x1079_FFFF	0x1078_0000	0 0x1079_FFFF		
ram(Debug)						
CORE1 I/D Cache	0x107A_0000	0x107A_3FFF	0x107A_0000	0x107A_3FFF		
ram(Debug)						
Main bus DEVAPCAO	0x107A_4000	0x107A_4FFF	0x107A_4000	0x107A_4FFF		
Main bus DEVAPC	0x107A_5000	0x107A_5FFF	0x107A_5000	0x107A_5FFF		
SCP_CFGREG_SEC	0x107A_6000	0x107F_A000	0x107A_6000	0x107F_A000		
Reserved	0x107F_B000	0x107F_BFFF	0x107F_B000	0x107F_BFFF		
SCP MailBox0	0x107F_C000	0x107F_CFFF	0x107F_C000	0x107F_CFFF		
SCP MailBox1	0x107F_D000	0x107F_DFFF	0x107F_D000	0x107F_DFFF		
SCP MailBox2	0x107F_E000	0x107F_EFFF	0x107F_E000	0x107F_EFFF		
SCP MailBox3	0x107F_F000	0x107F_FFFF	0x107F_F000	0x107F_FFFF		
SCP MailBox4	0x1072_1000	0x1072_1FFF	0x1072_1000	0x1072_1FFF		
INFRA external bus	0x1080_0000	0x1FFF_FFFF	0x1080_0000	0x1FFF_FFFF		

3.5.15.1 System Address Map from SCP View

The system address map from the SCP view can be configured by some register settings.

SCP View Address	Remap Register			
[31:28]	Name	Address		
4'h2	REMAP_CFG0::EXT_ADDR2(Default remap to 0x1)	SCP Base address+0xA506C[6:0]		
4'h3	REMAP_CFG0::EXT_ADDR3(Default remap to 0x1)	SCP Base address+0xA506C[6:0]		
4'h4	REMAP_CFG0::EXT_ADDR4(Default remap to 0x4)	SCP Base address+0xA5064[6:0]		
4'h5	REMAP_CFG0::EXT_ADDR5(Default remap to 0x5)	SCP Base address+0xA5064[14:8]		
4'h6	REMAP_CFG0::EXT_ADDR6(Default remap to 0x6)	SCP Base address+0xA5064[22:16]		
4'h7	REMAP_CFG0::EXT_ADDR7(Default remap to 0x7)	SCP Base address+0xA5064[30:24]		
4'h8	REMAP_CFG1::EXT_ADDR8(Default remap to 0x8)	SCP Base address+0xA5068[6:0]		
4'h9	REMAP_CFG1::EXT_ADDR9(Default remap to 0x9)	SCP Base address+0xA5068[14:8]		
4'hA	REMAP_CFG1::EXT_ADDRA(Default remap to 0xA)	SCP Base address+0xA5068[22:16]		
4'hB	REMAP_CFG1::EXT_ADDRB(Default remap to 0x0)	SCP Base address+0xA5068[30:24]		
4'hC	REMAP_CFG2::EXT_ADDRC(Default remap to 0x1)	SCP Base address+0xC0064[5:0]		
4'hD	REMAP_CFG2::EXT_ADDRD(Default remap to 0x2)	SCP Base address+0xA506C[14:8]		
4'hE	REMAP_CFG2::EXT_ADDRE(Default remap to 0x3)	SCP Base address+0xA506C[22:16]		

Table 3-13 System Address Map from SCP View

Example: To use the SCP view "0xExxx_xxxx" to access AP view "0x3xxx_xxxx", set REMAP_CFG2::EXT_ADDRE (SCP Base address+0xC006C[22:16]) as 0x3. It means that the SCP real access address is "0x3xxx_xxxx" instead of the "0xExxx_xxxx" area.

3.5.15.1.1 SCP Signal Descriptions

Table 3-14 presents SCP signal descriptions.

Signal Name	Туре	Description	Ball Location	
SCP_I3C0				
SCP_SCL0	DIO	SCP I3C clock 0	Y4, Y2, W2, F5, H7, T9	
SCP_SDA0	DIO	SCP I3C data 0	W6, AA2, W1, F6, G6, T10	
SCP_I2C0				
SCP_SCL1	DIO	SCP I2C clock 0	Y2, W2, F5, H7, T8, Y4	
SCP_SDA1	DIO	SCP I2C data 0	AA2, W1, F6, G6, T7, W6	
SCP_SPI0				
SCP_SPI0_CK	DO	SCP SPIO serial clock	T11	
SCP_SPI0_CS	DO	SCP SPIO chip select	V6	
SCP_SPI0_MI	DI	SCP SPI0 master input / slave output	V8	
SCP_SPI0_MO	DO	SCP SPI0 master output / slave input	V7	
SCP_SPI1_A				
SCP_SPI1_A_CK	DO	SCP SPI1 serial clock	T10	
SCP_SPI1_A_CS	DO	SCP SPI1 chip select	Т9	

Table 3-14 SCP Signal Descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description	Ball Location	
SCP_SPI1_A_MI	DI	SCP SPI1 master input / slave output	Т7	
SCP_SPI1_A_MO	DO	SCP SPI1 master output / slave input	Т8	
SCP_SPI1_B				
SCP_SPI1_B_CK	DO	SCP SPI1 serial clock	AC31	
SCP_SPI1_B_CS	DO	SCP SPI1 chip select	AD30	
SCP_SPI1_B_MI	DI	SCP SPI1 master input / slave output	AB31	
SCP_SPI1_B_MO	DO	SCP SPI1 master output / slave input	AC30	
SCP_SPI2				
SCP_SPI2_CK	DO	SCP SPI2 serial clock	G1	
SCP_SPI2_CS	DO	SCP SPI2 chip select	G2	
SCP_SPI2_MI	DI	SCP SPI2 master input / slave output	E2	
SCP_SPI2_MO	DO	SCP SPI2 master output / slave input	F2	
SCP_UART				
TP_UCTS1_AO	DI	SCP UART1 clear to send (active low)	G5, U5	
TP_UCTS2_AO	DI	SCP UART2 clear to send (active low)	E2, AB31, AA5	
TP_URTS1_AO	DO	SCP UART1 request to send (active low)	E3, U4	
TP_URTS2_AO	DO	SCP UART2 request to send (active low)	F2, AC5, AC30	
TP_URXD1_AO	DI	SCP UART1 receive data	G3, U3, V2	
TP_URXD2_AO	DI	SCP UART2 receive data	U3, AC31, U5, G1, AB5	
TP_UTXD1_AO	DO	SCP UART1 transmit data	G4, U2, V1	
TP_UTXD2_AO	DO	SCP UART2 transmit data	U2, AD30, U4, G2, AB6	
SCP_GPIO				
TP_GPIO0_AO	DIO	SCP GPIO0	Y10, W5, AB32, AB9	
TP_GPIO1_AO	DIO	SCP GPIO1	U10, V4, AA35, AC9	
TP_GPIO2_AO	DIO	SCP GPIO2	Y6, V5, G4, AB8	
TP_GPIO3_AO	DIO	SCP GPIO3	Y7, W8, G3, AC4	
TP_GPIO4_AO	DIO	SCP GPIO4	Y8, R31, E3, R34, AB3	
TP_GPIO5_AO	DIO	SCP GPIO5	W7, T30, G5, R33, AA8	
TP_GPIO6_AO	DIO	SCP GPIO6	W3, T31, E4, T33, AC8	
TP_GPIO7_AO	DIO	SCP GPIO7	W4, U32, E5, P31, AB7	
SCP Command Signals	·			
SCP_VREQ_VAO	DO	SCP to PMIC normal voltage request	M31	
Voice Wake-up	·			
VOW_CLK_MISO	DI	Voice wake-up interface clock	M32	
VOW_DAT_MISO	DI	Voice wake-up interface data	M30	

© 2023-2024 MediaTek Inc. All rights reserved.

3.6 Memory

3.6.1 DRAMC Controller (DRAMC)

3.6.1.1 Overview

The Dynamic Random-Access Memory Controller (DRAMC) supports the DRAM bus configuration of 4 channels of LPDDR4/4X 16-bit at 3,733 MHz (3,733 Mbps/per bit channel). When operating in the four-channel mode, this configuration enables a maximum DRAM bandwidth of up to 29.16 GB/s.

3.6.1.2 Features

The External Memory Interface (EMI) controller schedules requests from the masters and issues commands to the DRAM controller. It conducts flow control for the DRAM controller and masters to avoid DRAM stall or data overflow/underflow, minimizing the latency of the processor path to enhance the performance and increase DRAM efficiency. Furthermore, it informs clock control to gate the clock when there are no transactions to be processed.

The LPDDR4X DRAM controller supports the following features:

- Supports high-priority sideband signals for reducing the request latency
- Supports LPDDR4X with dual-rank per channel
- Maximum capacity of up to 8 GB for four channels with 16-bit data bus width
- Power-down and self-refresh for power saving
- Automatic clock stops for power saving
- DRAM I/O interface timing calibration for PVT (Process, Voltage, and Temperature) variation
- Read/write commands out of the order control
- 7 shuffle frequencies
- Supports DVFS for the SoC
- A request cannot cross a page boundary

The LPDDR4X DRAM supports a maximum shuffle capacity of up to 7 frequencies, enabling it to dynamically operate at the suitable frequency and voltage for the user's scenario, bandwidth requirement, and low power control to achieve a balance between performance and power. Table 3-15 displays the Dynamic Frequency Scaling (DFS) with 7 operating frequencies in Mbps. The additional capability is programmable to fine-tune performance and production requirements.

Table 3-15 LPDDR4X DFS (Mbps)

-					-		
LPDDR4X	3,733	3,200	2,400	1,866	1,600	1,200	800

3.6.1.3 Block Diagram

Figure 3-16 Block Diagram of Memory System

3.6.1.4 Function Description

The DRAMC transmits requests from the EMI to the DRAM protocol. Configurable registers that can be programmed by the CPU allow the DRAMC to operate in different modes.

- The requests from the EMI scheduler are pushed to the **command pool** to wait for execution in order.
- The **bus scheduler** inspects the pre-charge/active pool and command FIFO, and decides which SDRAM bus command, for example, PRECHARGE, ACTIVE, READ or WRITE, is issued to the SDRAM bus in order to maximize the bus utilization rate and reduce the response latency.
- The **timing controller** is responsible for the integrity of the SDRAM bus timing, such as pre-charge to active delay (tRP), active to command delay (tRCD), and bus turn-around time. The bus scheduler then refers to the information and chooses the next SDRAM bus command.
- The **DDR PHY unit** generates SDRAM bus commands, transmitting data and DQS to the SDRAM, and receiving data and DQS from the SDRAM.
- The response generator produces the response signals and data to the EMI scheduler.

As Figure 3-16 shows, besides the DRAMC that consists of a lower power controller, there are also the digital physical part (DPHY) and analog physical part (APHY).

- The **low power controller** responds to DRAMC low power control, such as power domain shutdown, startup, and Dynamic Voltage Frequency Scaling (DVFS).
- The **DPHY** is the middle level design covering the pin-mux and calibration operations, as well as the interface protocol between the DRAMC and APHY.
- The **APHY** is an analog high-speed DDRPHY responsible for the high-speed I/O design for the DDR Interface operation, with an integrated local PLL (Phase-Locked Loop) to generate the target frequency for the local design usage.

3.6.1.4.1 Clock

The clock source of the DRAM system (DRAMSYS) APHY is from its PLL, while the other one is from the SoC PLL, as Figure 3-17 shows. This clock structure supports the DRAMSYS in different modes, such as active, idle and DVFS, as well as dynamic clock management for the low power design.

Figure 3-17 DRAMSYS Clock and Low Power Structure

3.6.1.4.2 Reset

The asynchronous reset is sourced from the SoC, while the software reset on the DRAMSYS is sourced from the internal MediaTek low power controller.

3.6.1.5 Theory of Operations

3.6.1.5.1 Write Operation

The LPDDR4-SDRAM uses an un-matched DQS-DQ path for lower power, so the DQS-strobe must arrive at the SDRAM ball prior to the DQ signal by the amount of Tdqs2DQ. The DQS-strobe output is driven tWPRE before the first valid rising strobe edge. The tWPRE pre-amble should be 2xtCK. The DQS strobe must be trained to arrive at the DQ pad center-aligned with the DQ-data. The DQ-data must be held for tDIVW (data input valid window) and the DQS must be periodically trained to stay centered in the tDIVW to compensate for timing changes due to temperature and voltage variation. Burst data is captured by the SDRAM on successive edges of DQS until the 16-bit or 32-bit data burst is complete. The DQS-strobe must remain active (toggling) for tWPST (WRITE post-amble) after the completion of the burst WRITE. After a burst WRITE operation, tWR must be satisfied before a PRECHARGE command to the same bank can be issued.

Figure 3-18 Write Operation

3.6.1.5.2 Read Operation

A burst read command is initiated with CS, and CA[5:0] asserted to the proper state at the rising edge of CK, as defined by the LPDDR4 Command Truth Table. The command address bus inputs determine the starting column address for the burst. The two low-order address bits are not transmitted on the CA bus and are implied to be "0", so that the starting burst address is always a multiple of four, for example, 0x0, 0x4, 0x8, 0Xc. The Read Latency (RL) is defined from the last rising edge of the clock that completes a read command, for example, the second rising edge of the CAS-2 command, to the rising edge of the clock, from which the tDQSCK delay is measured. The first valid data is available RL * tCK + tDQSCK + tDQSQ after the rising edge of Clock that completes a read command. The data strobe output is driven tRPRE before the first valid rising strobe edge. The first data-bit of the burst is synchronized with the first valid (i.e., post-preamble) rising edge of the data strobe. Each subsequent data out appears on each DQ pin, edge-aligned with the data strobe. At the end of a burst, the DQS signals are driven for another half cycle post-amble, or for a 1.5-cycle post-amble if the programmable post-amble bit is set in the mode register.

Figure 3-19 Read Operation

3.6.1.6 Power Management

The following diagram and table illustrate the power domain and voltage terms and purpose of the DRAMC. For DRAM relative voltage constraints, refer to the JEDEC standard specification.

Figure 3-20 DRAM Controller Power Domain Architecture

Table 3-16 Voltage Support and Desciption

Voltage Supply	Description
VCORE	Digital circuit power domain
VMDDR	Analog DDRPHY power domain
VDD1	LPDDR4X 1.8V power rail
VDD2	LPDDR4X 1.1V power rail
VDDQ	IO buffer 0.6V power rail

3.6.1.7 LPDDR4X Signal Description

Table 3-17 DRAMC Signal Description

Signal Name	Туре	Description
CK_t	Input	DRAM clock signal
CK_c	Input	DRAM clock invert signal
CKE	Input	DRAM clock enable
CSO/CS1	Input	RANK1 to RANKO selection signal
CA[5:0]	Input	Address for all memories/CA buses for LPDDR4X
DQ[15:0]	I/O	Data bus for LPDDR4X
DMI[1:0]	Input	Data mask inversion
DQS_t[1:0]	I/O	Data strobe
DQS_c[1:0]	I/O	Data strobe invert
ZQ	Reference	Output driving calibration

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description
RESET_n	Input	Reset

3.6.1.7.1 LPDDR4X Timing Characteristics

The EMI LPDDR4X timing characteristics are compliant with JEDEC Standard—JESD209-4D.

3.6.1.7.2 LPDDR4X Application Guidelines

Table 3-18 presents supported LPDDR4X device combinations.

Table 3-18 LPDDR4X Device Combinations

Number of Devices	Device Data Width	Mirrored	EMI Width
2	2 × 16-bit	No	64-bit

Figure 3-21 shows the schematic connections for a 64-bit interface using $2 \times 2 \times 16$ -bit devices.

Figure 3-21 LPDDR4X Basic Schematic for 2 × 2 × 16-bit

3.6.1.8 Programming Guide

Initialize the DDRPHY.

- 1. Initialize the DRAMC.
- 2. Initialize the MediaTek low power controller.
- 3. Initialize the DRAM:
 - Set up the DRAM AC timing parameter.
 - Follow the DRAM specification to complete the DRAM initialization including mode-register programming.
 - Enable the command bus training.
 - Enable calibration for the DQ/DQS window.
 - Set up the refresh-rate counter.
- 4. Operate normally.

3.6.1.9 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.6.1.10 References

LPDDR4X specification: http://www.jedec.org/download/search/JC-42.6.pdf

3.6.1.11 Signal Description

Table 3-19 presents EMI signal descriptions.

Table 3-19 EMI Signal Descriptions (LPDDR4(X))

Signal Name	Туре	Description	Ball Location
EMI0—Calibration Resistor, Reset Output, Voltage Reference			
EMI0_EXTR ⁽¹⁾	AIO	EMI0 DRAM output driving calibration resistor	AT2
EMI0_RESET_N	DO	EMI0 DRAM reset output	AU35
EMI0_TP ⁽²⁾	AIO	EMI0 DRAM command/address voltage reference	AR3
EMI0 Command/Addres	s Bus—EMI	D_CA[5:0]	
EMI0_CA0	DO	EMI0 DRAM command/address output 0	AT22
EMI0_CA1	DO	EMI0 DRAM command/address output 1	AR22
EMI0_CA2	DO	EMI0 DRAM command/address output 2	AM23
EMI0_CA3	DO	EMI0 DRAM command/address output 3	AM22
EMI0_CA4	DO	EMI0 DRAM command/address output 4	AN21
EMI0_CA5	DO	EMI0 DRAM command/address output 5	AP21
EMIO System Bus—Command, Chip Select, Data Mask, Data Strobe, Clock Signals			
EMI0_CK_T	DO	EMI0 DRAM clock	AM20
EMI0_CK_C	DO	EMI0 DRAM clock invert	AL20

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description	Ball Location
EMI0_CKE0	DO	EMI0 DRAM clock enable for rank 0	AU20
EMI0_CKE1	DO	EMI0 DRAM clock enable for rank 1	AT20
EMI0_CS0	DO	EMI0 DRAM chip select for rank 0	AR20
EMI0_CS1	DO	EMI0 DRAM chip select for rank 1	AU22
EMI0_DMI0	DIO	EMI0 DRAM data mask/inversion for DQ[7:0]	AU25
EMI0_DMI1	DIO	EMI0 DRAM data mask/inversion for DQ[15:8]	AU31
EMI0_DQS0_T	DIO	EMI0 DRAM data strobe for DQ[7:0]	AM27
EMI0_DQS0_C	DIO	EMI0 DRAM data strobe invert for DQ[7:0]	AN27
EMI0_DQS1_T	DIO	EMI0 DRAM data strobe for DQ[15:8]	AT32
EMI0_DQS1_C	DIO	EMI0 DRAM data strobe invert for DQ[15:8]	AR32
EMIO Data Bus—EMIO	DQ[15:0]		·
EMI0_DQ0	DIO	EMI0 DRAM data pin 0	AU27
EMI0_DQ1	DIO	EMI0 DRAM data pin 1	AT26
EMI0_DQ2	DIO	EMI0 DRAM data pin 2	AL25
EMI0_DQ3	DIO	EMI0 DRAM data pin 3	AP25
EMI0_DQ4	DIO	EMI0 DRAM data pin 4	AL24
EMI0_DQ5	DIO	EMI0 DRAM data pin 5	AN25
EMI0_DQ6	DIO	EMI0 DRAM data pin 6	AT24
EMI0_DQ7	DIO	EMIO DRAM data pin 7	AT28
EMI0_DQ8	DIO	EMI0 DRAM data pin 8	AU34
EMI0_DQ9	DIO	EMI0 DRAM data pin 9	AN31
EMI0_DQ10	DIO	EMI0 DRAM data pin 10	AP30
EMI0_DQ11	DIO	EMIO DRAM data pin 11	AN29
EMI0_DQ12	DIO	EMI0 DRAM data pin12	AR29
EMI0_DQ13	DIO	EMI0 DRAM data pin 13	AP31
EMI0_DQ14	DIO	EMI0 DRAM data pin 14	AT30
EMI0_DQ15	DIO	EMI0 DRAM data pin 15	AU29
EMI1 Command/Addre	ess Bus—EMI	1_CA[5:0]	·
EMI1_CA0	DO	EMI1 DRAM command/address output 0	AT16
EMI1_CA1	DO	EMI1 DRAM command/address output 1	AR16
EMI1_CA2	DO	EMI1 DRAM command/address output 2	AL15
EMI1_CA3	DO	EMI1 DRAM command/address output 3	AP16
EMI1_CA4	DO	EMI1 DRAM command/address output 4	AN16
EMI1_CA5	DO	EMI1 DRAM command/address output 5	AL16
EMI1 System Bus—Cor	nmand, Chip	Select, Data Mask, Data Strobe, Clock Signals	· · ·
EMI1_CK_T	DO	EMI1 DRAM clock	AM18
EMI1_CK_C	DO	EMI1 DRAM clock invert	AL18

Signal Name	Туре	Description	Ball Location
EMI1_CKE0	DO	EMI1 DRAM clock enable for rank 0	AU18
EMI1_CKE1	DO	EMI1 DRAM clock enable for rank 1	AT18
EMI1_CS0	DO	EMI1 DRAM chip select for rank 0	AR18
EMI1_CS1	DO	EMI1 DRAM chip select for rank 1	AU16
EMI1_DMI0	DIO	EMI1 DRAM data mask/inversion for DQ[7:0]	AU13
EMI1_DMI1	DIO	EMI1 DRAM data mask/inversion for DQ[15:8]	AU7
EMI1_DQS0_T	DIO	EMI1 DRAM data strobe for DQ[7:0]	AN11
EMI1_DQS0_C	DIO	EMI1 DRAM data strobe invert for DQ[7:0]	AM11
EMI1_DQS1_T	DIO	EMI1 DRAM data strobe for DQ[15:8]	AU5
EMI1_DQS1_C	DIO	EMI1 DRAM data strobe invert for DQ[15:8]	AT5
EMI1 Data Bus—EMI1_	DQ[15:0]		
EMI1_DQ0	DIO	EMI1 DRAM data pin 0	AU11
EMI1_DQ1	DIO	EMI1 DRAM data pin 1	AT12
EMI1_DQ2	DIO	EMI1 DRAM data pin 2	AR11
EMI1_DQ3	DIO	EMI1 DRAM data pin 3	AN13
EMI1_DQ4	DIO	EMI1 DRAM data pin 4	AL13
EMI1_DQ5	DIO	EMI1 DRAM data pin 5	AP13
EMI1_DQ6	DIO	EMI1 DRAM data pin 6	AT14
EMI1_DQ7	DIO	EMI1 DRAM data pin 7	AT10
EMI1_DQ8	DIO	EMI1 DRAM data pin 8	AR4
EMI1_DQ9	DIO	EMI1 DRAM data pin 9	AU4
EMI1_DQ10	DIO	EMI1 DRAM data pin 10	AN8
EMI1_DQ11	DIO	EMI1 DRAM data pin 11	AR9
EMI1_DQ12	DIO	EMI1 DRAM data pin 12	AN9
EMI1_DQ13	DIO	EMI1 DRAM data pin 13	AR6
EMI1_DQ14	DIO	EMI1 DRAM data pin 14	AT8
EMI1_DQ15	DIO	EMI1 DRAM data pin 15	AU9
EMI2—Calibration Resi	stor, Reset O	utput, Voltage Reference	
EMI2_EXTR ⁽¹⁾	AIO	EMI2 DRAM output driving calibration resistor	B2
EMI2_RESET_N	DO	EMI2 DRAM reset output	B36
EMI2_TP ⁽²⁾	AIO	EMI2 DRAM command/address voltage reference	A3
EMI2 Command/Addre	ss Bus—EMI	2_CA[5:0]	
EMI2_CA0	DO	EMI2 DRAM command/address output 0	B16
EMI2_CA1	DO	EMI2 DRAM command/address output 1	C16
EMI2_CA2	DO	EMI2 DRAM command/address output 2	F15
EMI2_CA3	DO	EMI2 DRAM command/address output 3	F16
EMI2_CA4	DO	EMI2 DRAM command/address output 4	E17

Signal Name	Туре	Description	Ball Location	
EMI2_CA5	DO	EMI2 DRAM command/address output 5	D17	
EMI2 System Bus—Com	EMI2 System Bus—Command, Chip Select, Data Mask, Data Strobe, Clock Signals			
EMI2_CK_T	DO	EMI2 DRAM clock	F18	
EMI2_CK_C	DO	EMI2 DRAM clock invert	G18	
EMI2_CKE0	DO	EMI2 DRAM clock enable for rank 0	A18	
EMI2_CKE1	DO	EMI2 DRAM clock enable for rank 1	B18	
EMI2_CS0	DO	EMI2 DRAM chip select for rank 0	C18	
EMI2_CS1	DO	EMI2 DRAM chip select for rank 1	A16	
EMI2_DMI0	DIO	EMI2 DRAM data mask/inversion for DQ[7:0]	A13	
EMI2_DMI1	DIO	EMI2 DRAM data mask/inversion for DQ[15:8]	A7	
EMI2_DQS0_T	DIO	EMI2 DRAM data strobe for DQ[7:0]	F11	
EMI2_DQS0_C	DIO	EMI2 DRAM data strobe invert for DQ[7:0]	E11	
EMI2_DQS1_T	DIO	EMI2 DRAM data strobe for DQ[15:8]	B6	
EMI2_DQS1_C	DIO	EMI2 DRAM data strobe invert for DQ[15:8]	C6	
EMI2 Data Bus—EMI2_	DQ[15:0]			
EMI2_DQ0	DIO	EMI2 DRAM data pin 0	A11	
EMI2_DQ1	DIO	EMI2 DRAM data pin 1	B12	
EMI2_DQ2	DIO	EMI2 DRAM data pin 2	G13	
EMI2_DQ3	DIO	EMI2 DRAM data pin 3	D13	
EMI2_DQ4	DIO	EMI2 DRAM data pin 4	G14	
EMI2_DQ5	DIO	EMI2 DRAM data pin 5	E13	
EMI2_DQ6	DIO	EMI2 DRAM data pin 6	B14	
EMI2_DQ7	DIO	EMI2 DRAM data pin 7	B10	
EMI2_DQ8	DIO	EMI2 DRAM data pin 8	A4	
EMI2_DQ9	DIO	EMI2 DRAM data pin 9	E7	
EMI2_DQ10	DIO	EMI2 DRAM data pin 10	D8	
EMI2_DQ11	DIO	EMI2 DRAM data pin 11	E9	
EMI2_DQ12	DIO	EMI2 DRAM data pin 12	С9	
EMI2_DQ13	DIO	EMI2 DRAM data pin 13	D7	
EMI2_DQ14	DIO	EMI2 DRAM data pin 14	B8	
EMI2_DQ15	DIO	EMI2 DRAM data pin 15	A9	
EMI3 Command/Addres	ss Bus—EMI	3_CA[5:0]		
EMI3_CA0	DO	EMI3 DRAM command/address output 0	B22	
EMI3_CA1	DO	EMI3 DRAM command/address output 1	C22	
EMI3_CA2	DO	EMI3 DRAM command/address output 2	G23	
EMI3_CA3	DO	EMI3 DRAM command/address output 3	D22	
EMI3_CA4	DO	EMI3 DRAM command/address output 4	E22	

Signal Name	Туре	Description	Ball Location
EMI3_CA5	DO	EMI3 DRAM command/address output 5	G22
EMI3 System Bus—Com	nmand, Chip	Select, Data Mask, Data Strobe, Clock Signals	
EMI3_CK_T	DO	EMI3 DRAM clock	F20
EMI3_CK_C	DO	EMI3 DRAM clock invert	G20
EMI3_CKE0	DO	EMI3 DRAM clock enable for rank 0	A20
EMI3_CKE1	DO	EMI3 DRAM clock enable for rank 1	B20
EMI3_CS0	DO	EMI3 DRAM chip select for rank 0	C20
EMI3_CS1	DO	EMI3 DRAM chip select for rank 1	A22
EMI3_DMI0	DIO	EMI3 DRAM data mask/inversion for DQ[7:0]	A25
EMI3_DMI1	DIO	EMI3 DRAM data mask/inversion for DQ[15:8]	A31
EMI3_DQS0_T	DIO	EMI3 DRAM data strobe for DQ[7:0]	E27
EMI3_DQS0_C	DIO	EMI3 DRAM data strobe invert for DQ[7:0]	F27
EMI3_DQS1_T	DIO	EMI3 DRAM data strobe for DQ[15:8]	A33
EMI3_DQS1_C	DIO	EMI3 DRAM data strobe invert for DQ[15:8]	B33
EMI3 Data Bus—EMI3_	DQ[15:0]		·
EMI3_DQ0	DIO	EMI3 DRAM data pin 0	A27
EMI3_DQ1	DIO	EMI3 DRAM data pin 1	B26
EMI3_DQ2	DIO	EMI3 DRAM data pin 2	C27
EMI3_DQ3	DIO	EMI3 DRAM data pin 3	E25
EMI3_DQ4	DIO	EMI3 DRAM data pin 4	G25
EMI3_DQ5	DIO	EMI3 DRAM data pin 5	D25
EMI3_DQ6	DIO	EMI3 DRAM data pin 6	B24
EMI3_DQ7	DIO	EMI3 DRAM data pin 7	B28
EMI3_DQ8	DIO	EMI3 DRAM data pin 8	C34
EMI3_DQ9	DIO	EMI3 DRAM data pin 9	A34
EMI3_DQ10	DIO	EMI3 DRAM data pin 10	E30
EMI3_DQ11	DIO	EMI3 DRAM data pin 11	C29
EMI3_DQ12	DIO	EMI3 DRAM data pin 12	E29
EMI3_DQ13	DIO	EMI3 DRAM data pin 13	C32
EMI3_DQ14	DIO	EMI3 DRAM data pin 14	B30
EMI3_DQ15	DIO	EMI3 DRAM data pin 15	A29

(1) Connect this pin through an external 60.4 Ω (1%) resistor to GND.

(2) If not used, it can be left unconnected.

3.6.2 External Memory Interface (EMI)

3.6.2.1 Overview

The External Memory Interface (EMI) controller schedules requests from the masters and issues commands to DRAMC in an efficient way. The block conducts flow control for DRAMC and masters to avoid DRAMC stalling or data overflow or underflow. It also minimizes the latency of processor path to enhance the performance and tries to increase the DRAMC efficiency. The block also informs clock control to gate the clock when it does not find any transaction right now.

3.6.2.2 Features

The EMI controller receives AXI master commands and issues them to the DRAMC. It supports all AXI transaction type commands except for the fixed and cache commands. There are plenty of schedule options to schedule the command. The main features are as follows:

- Comply with the AXI standard protocol
 - Support SDRAM up to four channels
 - Maximum size for each channel is 8GB
- Rich QoS (Quality of Service) policy, as listed in Section 3.6.2.5.1

3.6.2.3 Block Diagram

The EMI connects the systems via eight 128-bit AXI ports and supports 4-channel DRAMC connection, and each channel supports two-rank SDRAMs. In each DRAMC, register programming is performed via the APB interface to initialize SDRAM or other parameter settings.

Figure 3-22 4-Channel EMI/LPDDR4 SDRAM Controller Top Connection

3.6.2.4 Function Description

The EMI is a bridge between several systems and the DRAM controller. For Cortex Application Processing Microcontroller Unit (APMCU) system, two 128-bit AXI ports are provided for the connection. For multimedia masters such as display, VENC, VDEC, and camera, two 128-bit AXI ports are provided for the connection. For the GPU and APU, two 128-bit AXI ports are provided for the connection.

Besides, there is a 128-bit AXI port for connecting to the audio system and a 128-bit AXI port for connecting to the peripherals.

3.6.2.5 Theory of Operations

3.6.2.5.1 **QoS Policy**

To ensure that each master port can own the equal bandwidth QoS, EMI provides the following QoS Policy:

• Priority

Each request from each master can be grouped into three levels, High, Normal, and Low, and EMI serves these requests in the order of priority. Requests with ultra-signal and starvation are grouped into the High group. The

requests whose allocated bandwidth is not exceeded are assigned to the Normal group. The requests whose allocated bandwidth is exceeded are categorized into the Low group.

Starvation Prevention

To avoid request starvation, starvation counters are set for each master port. When the starvation counter reaches zero, the request is promoted to the High group for prioritized execution. Also, the read/write channel has individual starvation counter settings for either read or write latency-sensitive commands.

Bandwidth Limiter

EMI provides the bandwidth limiter for each master port to ensure that each master has the minimum quota for bandwidth sharing. The amount of bandwidth allocation is configurable.

3.6.2.5.2 Arbitration and Scheduling

To improve the SDRAM efficiency and minimize the latency, EMI provides several configuration options:

• Priority Code Arbitration

EMI Scheduler follows a priority code to choose the requests with the highest priority. The priority codes depend on several domains, urgent, ultra, bandwidth limiter, page hit, and age (starvation). Age expired (with negative starvation counters) requests always have the highest priority. The domain priority can be configured.

• Data Bus Turnaround

Frequent changes in data direction (switching between reads and writes) would lower the SDRAM bandwidth efficiency. Therefore, the scheduler would group a batch of read or write commands in a row and send them to DRAMC. The maximum group number can be configured.

Page Miss Prevention and Page Hit Promotion
 In order to avoid the overhead for SDRAM page miss, EMI masks the requests with page miss and promotes these requests with page hit.

3.6.2.6 Programming Guide

To enable the EMI function, follow the steps below to program.

- 1. Program the supported channel number.
- 2. Program the DRAM address mapping type, such as column bit number, and bank bit number.
- 3. Program the latency for each AXI and set the request as high priority when the age counter expires.
- 4. Allocate the bandwidth requirement for each AXI port and set the bandwidth limiter value.
- 5. Set the bandwidth regulator for each AXI port to either soft mode or hard mode.

3.7 Storage

3.7.1 MMC (MultiMediaCard) and SD (Secure Digital) Controller (MSDC)

3.7.1.1 **Overview**

The MMC (MultiMediaCard) and SD (Secure Digital) Controller (MSDC) offers a high throughput data transfers while power consumption and data security between device local hosts and memory cards are taken into consideration.

The MSDC interface fully supports:

- SD 3.0 (Secure Digital) Memory Card Specification
- SDIO 3.0 (Secure Digital Input Output) Card Specification
- eMMC 5.1 (embedded MultiMediaCard) Specification

3.7.1.2 Features

The device has integrated 3 MSDC modules, MSDC0, MSDC1, and MSDC2. MSDC0 is used as the MMC[™]/eMMC interface, MSDC1 is used as the SD interface, and MSDC2 is used as the SD/SDIO interface. Each MSDC module supports the following key features:

- 32-bit access on AHB for control registers
- Basic DMA and linked-list based DMA modes

The MSDC0 controller fully supports:

- 64-bit data access on AXI bus
- 1-, 4-, and 8-bit data bus width for eMMC
- Backwards compatibility with legacy MMC
- High-speed Single Data Rate (SDR) mode
- High-speed Double Data Rate (DDR) mode
- HS200 mode, SDR up to 200 MBps
- HS400 mode, DDR up to 400 MBps
- eMMC boot up mode
- Command Queue (CMDQ)
- Advanced Encryption Standard (AES)

The MSDC1 and MSDC2 controllers fully support:

- 32-bit data access on AHB
- 1-, 4-bit data bus width for SD card interface
- 1-, 4-bit data bus width for SDIO interface (MSDC2 only)
- Default Speed mode, data rate up to 12 MBps
- High-speed mode, data rate up to 25 MBps
- SDR12 mode, data rate up to 12 MBps
- SDR25 mode, data rate up to 25 MBps

© 2023-2024 MediaTek Inc. All rights reserved.

- SDR50 mode, data rate up to 50 MBps
- SDR104 mode, data rate up to 100 MBps
- DDR50 mode, data rate up to 50 MBps

3.7.1.3 Block Diagram

Figure 3-23 System-level Block Diagram of MSDC

3.7.1.4 Function Description

Table 3-20 MSDC Function and Address

MSDC List	Base Address	Feature
MSDC0	0x11230000	eMMC5.1
MSDC1	0x11240000	SD3.0/SDIO3.0/eMMC4.5
MSDC2	0x11250000	SDIO3.0/eMMC4.5

As Figure 3-23 illustrates, the MSDC consists of three primary components: MSDC_GDMA, MSDC_CORE and MSDC_REG.

- **MSDC_GDMA**: The DMA engine, facilitating data transfer between the MSDC and memory.
- MSDC_CORE: The main controller of the MSDC, managing data transfer between the host and the device.
- MSDC_REG: The register to configure the MSDC.

3.7.1.5 Theory of Operations

3.7.1.5.1 MSDC Read/Write

3.7.1.5.1.1 MSDC PIO Read

When MSDC_CFG.PIO_MODE is set, the MSDC operates in the PIO (Programmed Input/Output) mode and receives data from the device. The software can read data from the *PIO_RXDATA* register when MSDC_FIFOCS.RXFIFOCNT is not 0 (data buffer empty).

Upon transfer completion, an interrupt is generated. The software is responsible for clearing the interrupt bit after receiving it.

Figure 3-24 Single Block and Multi-block Read in PIO Mode

3.7.1.5.1.2 MSDC PIO Write

When MSDC_CFG.PIO_MODE is set, the MSDC operates in the PIO mode and sends data to the device. The software can write data from the *PIO_TXDATA* register when MSDC_FIFOCS.TXFIFOCNT is not 8'h80 (data buffer full).

Upon transfer completion, an interrupt is generated. The software is responsible of clearing the interrupt bit after receiving it.

Figure 3-25 Single Block and Multi-block Write in PIO Mode

3.7.1.5.1.3 MSDC DMA Read

When MSDC_CFG.PIO_MODE is not set, the MSDC operates in the DMA mode. It receives data from the device and writes it to the target DRAM address through the MSDC_GDMA control. The software must configure the *DMA_SA* register with the start address in DRAM.

Upon transfer completion, an interrupt is generated. The software is responsible of clearing the interrupt bit after receiving it.

- **SD_XFER_COMPLETE** is set when the DMA controller has transferred all the data and the CRC (Cyclic Redundancy Check) has been done.
- (DMA_CTRL.LAST_BUF = 0) DMA_DONE is set when the DMA controller has transferred all the data set in the DMA controller.
- (DMA_CTRL.LAST_BUF = 1) DMA_DONE is set at the same time as SD_XFER_COMPLETE.

Figure 3-26 Single Block and Multi-block Read in DMA Mode

3.7.1.5.1.4 MSDC DMA Write

When MSDC_CFG.PIO_MODE is not set, the MSDC operates in the DMA mode. It receives data from DRAM through MSDC_GDMA control and writes it to the device. The software must configure the *DMA_SA* register with the start address in DRAM.

Upon transfer completion, an interrupt is generated. The software is responsible of clearing the interrupt bit after receiving it.

- **SD_XFER_COMPLETE** is set when the DMA controller has transferred all the data and the CRC has been done.
- (DMA_CTRL.LAST_BUF = 0) DMA_DONE is set when the DMA controller has transferred all the data set in the DMA controller.
- (DMA_CTRL.LAST_BUF = 1) DMA_DONE is set at the same time as SD_XFER_COMPLETE.

Figure 3-27 Single Block and Multi-block Write in DMA Mode

3.7.1.5.2 SD 3.0 Bus Voltage Switch

3.7.1.5.2.1 Voltage Switch Command

Figure 3-28 illustrates the definition of the voltage switch command (CMD11), which can be executed (even when the card is locked) in the ready state and does not alter the state.

A response of type R1 signifies that the card starts the voltage switch sequence. If the host detects no response, a power cycle should be executed. There are four cases, in which the card indicates no response to CMD11:

- 1. The card does not support voltage switching.
- 2. The card supports voltage switching, but ACMD41 is received with S18R = 0.
- 3. The card is not in the ready state.
- 4. The signal level is already switched to 1.8V.

In all of the above cases, CMD11 is considered an illegal command.

Figure 3-28 Voltage Switch Command

3.7.1.6 Programming Guide

To initiate the MSDC function, the following settings should be programmed in the prescribed manner.

3.7.1.6.1 MSDC Command Sequence

This section introduces the suggested MSDC command sequence for different scenarios.

3.7.1.6.1.1 SD Command without Response

- 1. Check whether SDC_STA.SDCBUSY is 0 before starting to issue this command.
- 2. When this command is done, check the following bits for the status.
 - MSDC_INT.SD_CMDRDY
 - MSDC_INT.SD_CMDTO
 - MSDC_INT.SD_RESP_CRCERR

3.7.1.6.1.2 SD Command with Response

- 1. Check whether SDC_STA.SDCBUSY is 0 before starting to issue this command
- 2. When this command is done, check the following bits for the status.
 - MSDC_INT.SD_CMDRDY
 - MSDC_INT.SD_CMDTO
 - MSDC_INT.SD_RESP_CRCERR
- 3. The response should be in SDC_RESP0 to SDC_RESP3.

3.7.1.6.1.3 SD Command of Data Read/Write Transfer

- 1. Check whether SDC_STA.SDCBUSY is 0 before starting to issue this command.
- 2. When this command is done, check the following bits for the phase status.
 - MSDC_INT.SD_CMDRDY
 - SD_CMDTO
 - SD_RESP_CRCERR
- 3. The response should be in SDC_RESP0 to SDC_RESP3.
- 4. Enable DMA if needed (the DMA_CTRL register should be programmed).
- 5. The PIO mode enables data movement (the MSDC_FIFOCS, MSDC_RXDAT, and MSDC_TXDAT registers).
- 6. The PIO mode and DMA mode must not be switched for the same transfer; otherwise, the result can be unexpected.
- 7. Check the following for the data phase status.
 - MSDC_INT.SD_XFER_COMPLETE
 - DMA_DONE
 - SD_DATTO
 - SD_DATA_CRCERR

3.7.1.6.1.4 SD Software Check before Issuing New Command

The software should always check SDC_STA.CMDBUSY before issuing a new command, and should also check SDC_STA.SDCBUSY for R1b response type and data transfer commands.

3.7.1.6.2 MSDC Tuning Support

The host controller incorporates a tuning algorithm to ensure stable data sampling, command response and CRC status from the device. Both command and data have a pad delay (pad_delay). The tuning flow is illustrated as follows.

Figure 3-29 MSDC Tuning Flow

3.7.1.7 MSDC Signal Descriptions

Table 3-21 presents MSDC signal descriptions.

Signal Name	Туре	Description	Ball Location		
MSDC0					
MSDC0_CLK	DO	eMMC clock output	F32		
MSDC0_CMD	DIO	eMMC command	F33		
MSDC0_DAT0	DIO	eMMC data 0	D33		
MSDC0_DAT1	DIO	eMMC data 1	F36		
MSDC0_DAT2	DIO	eMMC data 2	D36		
MSDC0_DAT3	DIO	eMMC data 3	E32		
MSDC0_DAT4	DIO	eMMC data 4	D35		
MSDC0_DAT5	DIO	eMMC data 5	F37		
MSDC0_DAT6	DIO	eMMC data 6	E36		
MSDC0_DAT7	DIO	eMMC data 7	D37		
MSDC0_DSL	DI	eMMC data strobe input	E35		
MSDC0_RSTB	DO	eMMC reset output	E34		
MSDC1	MSDC1				
MSDC1_CLK	DO	SD card clock output	D4		
MSDC1_CMD	DIO	SD card command	D3		

Table 3-21 MSDC Signal Descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description	Ball Location
MSDC1_DAT0	DIO	SD card data 0	D2
MSDC1_DAT1	DIO	SD card data 1	D1
MSDC1_DAT2	DIO	SD card data 2	C4
MSDC1_DAT3	DIO	SD card data 3	C3
MSDC2			
MSDC2_CLK	DO	SD card / SDIO clock output	AD35
MSDC2_CMD	DIO	SD card / SDIO command	AC35
MSDC2_DAT0	DIO	SD card / SDIO data 0	AD37
MSDC2_DAT1	DIO	SD card / SDIO data 1	AD36
MSDC2_DAT2	DIO	SD card / SDIO data 2	AB37
MSDC2_DAT3	DIO	SD card / SDIO data 3	AB35

3.7.1.8 MSDC Signal Mapping

The communication protocol between the controller and device is implemented through an advanced 11-signal or 6-signal bus. See Table 3-22 for more details.

No.	Name ^{(3.7)(1)}	Туре	eMMC	SD/SDHC/SDXC	SDIO	Description
1	MSDC0/1/2_CLK	DO	CLK	CLK	CLK	Clock
2	MSDC0_DSL	DI	DSL			Data Strobe
3	MSDC0_RSTB	DO	RCLK			Reset output
4	MSDC0/1/2_DAT0	DIO	DAT0	DAT0	DAT0	Serial data line bit 0
5	MSDC0/1/2_DAT1	DIO	DAT1	DAT1	DAT1	Serial data line bit 1
6	MSDC0/1/2_DAT2	DIO	DAT2	DAT2	DAT2	Serial data line bit 2
7	MSDC0/1/2_DAT3	DIO	DAT3	DAT3	DAT3	Serial data line bit 3
8	MSDC0_DAT4	DIO	DAT4			Serial data line bit 4
9	MSDC0_DAT5	DIO	DAT5			Serial data line bit 5
10	MSDC0_DAT6	DIO	DAT6			Serial data line bit 6
11	MSDC0_DAT7	DIO	DAT7			Serial data line bit 7
12	MSDC0/1/2_CMD	DIO	CMD	CMD	CMD	Command/bus state
13	SD_WP ⁽²⁾	I		WP		Write protection
14	SD_INS ⁽²⁾	I		INS		Card insertion

Table 3-22 MSDC Signal Mapping

(1) All embedded pull-up and pull-down resistors can be disabled by programming the corresponding control registers if optimal pull-up or pull-down resistors are required on the system board.

(2) SD_WP and SD_INS signals are not provided by the MSDC controller. These functions can be accomplished using GPIO pins, if needed.

3.7.1.9 MSDC Timing Characteristics

Table 3-23 and Figure 3-30 present the MSDC timing characteristics in Default Speed mode.

		Table 3-23 Wisbe Timing Characteristics (Dejuan Speed Inc	buc)			
No	Symbol	Parameter	Min	Max	Unit	
Clock CLK	(CLK rise and fall t	imes are measured by min V _{IH} and max V _{IL}); $C_{CARD} \le 10 \text{ pF}$				
DS1	fop	Operating frequency data transfer mode	0	25	MHz	
031	f _{OP_ID}	Operating frequency identification mode	100	400	kHz	
DS2	tw_clk_l	Pulse duration, CLK low	10		ns	
DS3	tw_clk_h	Pulse duration, CLK high	10		ns	
DS4	trise_clk	Rise time, CLK		10	ns	
DS5	tfall_clk	Fall time, CLK		10	ns	
Input DAT	COMD (referenced	to CLK); C _{CARD} ≤ 10 pF				
DS6	t _{su_DAT/CMD}	Setup time, DAT/CMD input	5		ns	
DS7	th_dat/cmd	Hold time, DAT/CMD input	5		ns	
Output D	Output DAT/CMD (referenced to CLK); C∟ ≤ 40 pF					
DS8	td_dat/cmd	Delay time, DAT/CMD output during data transfer mode	0	14	ns	
DS9	td_dat/cmd_id	Delay time, DAT/CMD output during identification mode	0	50	ns	

Table 3-23 MSDC Timing Characteristics (Default Speed mode)

Figure 3-30 MSDC Timing Diagram (Default Speed mode)

Table 3-24 and Figure 3-31 present the MSDC timing characteristics in High Speed mode.

No	Parameter		Min	Max	Unit
Clock CLK	(CLK rise and fall ti	mes are measured by min V _{IH} and max V _{IL}); $C_{CARD} \leq 10 \text{ pF}$			
HS1	fop	Operating frequency data transfer mode	0	50	MHz
HS2	tw_CLK_L	Pulse duration, CLK low	7		ns
HS3	t _{w_CLK_H}	Pulse duration, CLK high	7		ns
HS4	t _{rise_clk}	Rise time, CLK		3	ns
HS5	t _{FALL_CLK}	Fall time, CLK		3	ns
Input DAT	CMD (referenced	to CLK); C _{CARD} ≤ 10 pF			
HS6	t _{su_DAT/CMD}	Setup time, DAT/CMD input	6		ns

Table 3-24 MSDC Timing Characteristics (High Speed mode)

© 2023-2024 MediaTek Inc. All rights reserved.

No	Parameter			Min	Max	Unit
HS7	th_dat/cmd	Hold time, DAT/CMD input		2		ns
Output DAT	CCMD (referenced to	o CLK)				
HS8	t _{d_DAT/CMD}	Delay time, DAT/CMD output ⁽¹⁾	CL ≤ 40 pF		14	ns
HS9	th_dat/cmd	Hold time, DAT/CMD output ⁽¹⁾	CL ≥ 15 pF	2.5		ns
	CL	Total system capacitance for each line	•		40	pF

(1) Valid during data transfer mode.

Figure 3-31 MSDC Timing Diagram (High Speed mode)

Table 3-25 and Figure 3-32 present the MSDC timing characteristics in SDR12, SDR25, SDR50, and SDR104 modes.

No.		Max	Unit		
CLK output	from host			•	
SDR121		Cycle time, CLK for SDR12		40	ns
	+-	Cycle time, CLK for SDR25		20	ns
SURIZI	tc	Cycle time, CLK for SDR50		10	ns
		Cycle time, CLK for SDR104		4.8 ⁽⁴⁾	ns
SDR122	tw_clk_l	Pulse duration, CLK low	10		ns
SDR123	t _{w_CLK_} н	Pulse duration, CLK high	10		ns
	D	Duty Cycle, CLK	30	70	%
SDR124	trise_clk	Rise time, CLK		0.2 × SDR121 ⁽¹⁾	ns
SDR125	tfall_clk	Fall time, CLK		0.2 × SDR121 ⁽¹⁾	ns
Host DAT/C	MD input (re	ferenced to CLK), V _{CT} = 0.975 V			
600126		Setup time, DAT/CMD input for SDR50, C _{CARD} = 10 pF	3		ns
SDR126	t _{su_DAT/CMD}	Setup time, DAT/CMD input for SDR104, C _{CARD} = 10 pF	1.4		ns
600127	. .	Hold time, DAT/CMD input for SDR50, C _{CARD} = 5 pF	0.8		ns
SDR127	th_dat/cmd	Hold time, DAT/CMD input for SDR104, C _{CARD} = 5 pF	0.8		ns
Host DAT/C	MD output (referenced to CLK)		• •	
600122		Delay time, DAT/CMD output for SDR12/SDR25,		14	ns
SDR128	td_dat/cmd	tc ≥ 20.0 ns, CL = 40 pF, using driver type B			

© 2023-2024 MediaTek Inc. All rights reserved.

	Parameter	Min	Max	Unit
	Delay time, DAT/CMD output for SDR50, $t_c \ge 10.0$		7.5	ns
		0	2	UI ⁽²⁾
A+	Delay variation due to temperature change after	-	- 1550	
Δtd_dat/cmd	tuning for SDR104	-350	+1550	ps
t _{h_DAT/CMD}	Hold time, DAT/CMD output for	1.5		ns
t		0 6(3)		UI ⁽²⁾
1	Δt _{d_DAT/CMD}	$\Delta t_{d_{DAT/CMD}} \begin{bmatrix} Delay time, DAT/CMD output for SDR50, t_{c} \ge 10.0 \\ ns, C_{L} = 30 \text{ pF, using driver type B} \\ \hline Delay time, DAT/CMD output for SDR104 \\ \hline Delay variation due to temperature change after tuning for SDR104 \\ \hline Hold time, DAT/CMD output for SDR104 \\ \hline Hold time, DAT/CMD output for SDR12/SDR25/SDR50, C_{L} = 15 \text{ pF} \\ \hline Delay time, DAT/CMD output for the second second$	$\Delta t_{d_DAT/CMD} \begin{bmatrix} Delay time, DAT/CMD output for SDR50, t_c \ge 10.0 \\ ns, C_L = 30 pF, using driver type B \\ \hline Delay time, DAT/CMD output for SDR104 & 0 \\ \hline Delay variation due to temperature change after \\ tuning for SDR104 & -350 \\ \hline th_{_DAT/CMD} & Hold time, DAT/CMD output for \\ SDR12/SDR25/SDR50, C_L = 15 pF & 1.5 \\ \hline \end{tabular}$	$\Delta t_{d_DAT/CMD} \begin{bmatrix} Delay time, DAT/CMD output for SDR50, t_{c} \ge 10.0 \\ ns, C_{L} = 30 \text{ pF, using driver type B} \\ \hline Delay time, DAT/CMD output for SDR104 & 0 & 2 \\ \hline Delay variation due to temperature change after \\ tuning for SDR104 & -350 & +1550 \\ \hline th_{_DAT/CMD} & Hold time, DAT/CMD output for \\ SDR12/SDR25/SDR50, C_{L} = 15 \text{ pF} & 1.5 \\ \hline \end{bmatrix}$

(1) $t_{RISE_CLK}/t_{FALL_CLK} < 0.96$ ns (max) at 208 MHz, $C_{CARD} = 10$ pF; $t_{RISE_CLK}/t_{FALL_CLK} < 2$ ns (max) at 100 MHz, $C_{CARD} = 10$ pF. The absolute maximum value of t_{RISE_CLK} and t_{FALL_CLK} is 10 ns regardless of the clock frequency.

(2) Unit Interval (UI) is one bit nominal time. For example, UI = 5 ns at 200 MHz.

(3) $t_{h_{DAT/CMD}} = 2.88 \text{ ns at } 208 \text{ MHz}$

(4) Maximum 208 MHz, V_{CT} = 0.975 V

Figure 3-32 MSDC Timing Diagram (SDR12/SDR25/SDR50/SDR104 modes)

Table 3-26 and Figure 3-33 present the MSDC timing characteristics in DDR50 mode.

No	Parameter			Min	Max	Unit
Input DAT/	CMD (referenc	ed to CLK rising and falling edge/rising edg	e); C _{CARD} ≤ 10 pF			
DDR503	t _{su_CMD}	Setup time, CMD input		6		ns
	t _{su_DAT}	Setup time, DAT input		3		ns
DDR504	t _{h_CMD}	Hold time, CMD input		0.8		ns
	t _{h_DAT}	Hold time, DAT input		0.8		ns
Output DA	T/CMD (refere	nced to CLK rising and falling edge/rising edge/	dge)			
DDR505	t _{d_CMD}	Delay time, CMD output ⁽¹⁾	CL ≤ 30 pF		13.7	ns
DDK303	t _{d_DAT}	Delay time, DAT output ⁽¹⁾	CL ≤ 25 pF		7	ns
DDR506	th_CMD	Hold time, CMD output	CL ≥ 15 pF	1.5		ns
006700	th_dat	Hold time, DAT output	CL ≥ 15 pF	1.5		ns

Table 3-26 MSDC Timing Characteristics (DDR50 mode)

(1) Valid during data transfer mode.

Figure 3-33 MSDC Timing Diagram (DDR50 mode)

Table 3-27 and Figure 3-34 present the MSDC timing characteristics in HS200 mode.

	Table 5-27 WiSDC Thining Characteristics (115200 mode	-/		
	Parameter	Min	Max	Unit
•				
tc	Cycle time, CLK	5		ns
trise_clk	Rise time, CLK (CDevice \leq 6 pF)		1 ⁽⁴⁾	ns
t fall_clk	Fall time, CLK (CDevice ≤ 6 pF)		1 ⁽⁴⁾	ns
D	Duty Cycle, CLK	30	70	%
CMD; $C_{Device} \leq 6$	pF			
t _{su_DAT/CMD}	Setup time, DAT/CMD input	1.4		ns
th_dat/cmd	Hold time, DAT/CMD input	0.8		ns
T/CMD				
td_dat/cmd	Delay time, DAT/CMD output	0	2	UI ⁽¹⁾
	Delay variation due to temperature change after	-350	1550	
Δt_{d} _dat/cmd	tuning ⁽²⁾	(ΔT=-20°C)	(ΔT=90°C)	ps
th_dat/cmd	Hold time, DAT/CMD output	0.575 ⁽³⁾		UI ⁽¹⁾
	t_{RISE_CLK} t_{FALL_CLK} D $CMD; C_{Device} \leq 6$ $t_{su_DAT/CMD}$ $t_{h_DAT/CMD}$ $t_{d_DAT/CMD}$ $t_{d_DAT/CMD}$	ParametertcCycle time, CLK t_{RISE_CLK} Rise time, CLK (CDevice \leq 6 pF) t_{FALL_CLK} Fall time, CLK (CDevice \leq 6 pF)DDuty Cycle, CLKCMD; CDevice \leq 6 pF $t_{su_DAT/CMD}$ Setup time, DAT/CMD input $t_{h_DAT/CMD}$ Hold time, DAT/CMD inputT/CMD $t_{d_DAT/CMD}$ Delay time, DAT/CMD output $t_{d_DAT/CMD}$ Delay time, DAT/CMD output $\Delta t_{d_DAT/CMD}$ Delay time, DAT/CMD output	ParameterMintcCycle time, CLK5tRISE_CLKRise time, CLK (CDevice $\leq 6 \text{ pF}$)1tFALL_CLKFall time, CLK (CDevice $\leq 6 \text{ pF}$)0DDuty Cycle, CLK30CMD; CDevice $\leq 6 \text{ pF}$ tsu_DAT/CMDSetup time, DAT/CMD input1.4th_DAT/CMDHold time, DAT/CMD input0.8T/CMDtd_DAT/CMDDelay time, DAT/CMD output0 $\Delta t_d_DAT/CMD$ Delay variation due to temperature change after tuning ⁽²⁾ -350 ($\Delta T=-20^{\circ}C$)	ParameterMinMaxtcCycle time, CLK5tRISE_CLKRise time, CLK (CDevice $\leq 6 \text{ pF}$)1(4)tFALL_CLKFall time, CLK (CDevice $\leq 6 \text{ pF}$)1(4)DDuty Cycle, CLK (CDevice $\leq 6 \text{ pF}$)1(4)DDuty Cycle, CLK30CMD; CDevice $\leq 6 \text{ pF}$ 10tsu_DAT/CMDSetup time, DAT/CMD input1.4th_DAT/CMDHold time, DAT/CMD input0.8t/CMDUDelay time, DAT/CMD output0td_DAT/CMDDelay time, DAT/CMD output02 $\Delta t_d_DAT/CMD$ Delay variation due to temperature change after tuning ⁽²⁾ -350 ($\Delta T=-20^{\circ}C$)1550 ($\Delta T=90^{\circ}C$)

Table 3-27 MSDC Timing Characteristics (HS200 mode)

(1) Unit Interval (UI) is one bit nominal time. For example, UI= 5 ns at 200 MHz.

(2) Total allowable shift of output valid window ($t_{h_DAT/CMD}$) from last system tuning procedure $\Delta t_{d_DAT/CMD}$ is 2600 ps for ΔT from -25 °C to 125 °C during operation.

(3) The minimum value is equal to 2.88 ns at 208 MHz.

(4) The absolute maximum value of $t_{\text{RISE_CLK}}$ and $t_{\text{FALL_CLK}}$ is 10 ns regardless of the clock frequency.

Figure 3-34 MSDC Timing Diagram (HS200 mode)

Table 3-28, Figure 3-35 and Figure 3-36 present the MSDC timing characteristics in HS400 mode.

No	Symbol	Parameter	Min	Max	Unit
Input CLK					
HS4001	tc_clk	Cycle time, CLK (with respect to V _T)	5		ns
	SR	Slew rate, with respect to $V_{\text{IH}}/V_{\text{IL}}$	1.125		V/ns
HS4002	t_{ck_dd}	Duty cycle distortion ⁽¹⁾	0	0.3	ns
HS4003	tw_clk	Pulse duration, CLK (with respect to V _T)	2.2		ns
Input DAT (referenced to (CLK); with respect to VIH/VIL; (C _{Device} ≤ 6 pF)			
HS4004	t _{su_DAT}	Setup time, DAT input	0.4		ns
HS4005	t _{h_DAT}	Hold time, DAT input	0.4		ns
	SR	Slew rate	1.125		V/ns
Data Strob	e	•			
HS4006	tc_clk	Cycle time, CLK (with respect to V_T)	5		ns
	SR	Slew rate (with respect to $V_{\text{OH}}/V_{\text{OL}}$ and HS400 reference load)	1.125		V/ns
HS4007	t _{ds_dd}	Duty cycle distortion ⁽²⁾	0	0.2	ns
HS4008	tw_clk	Pulse duration, CLK (with respect to V_T)	2		ns
	t _{rpre}	Read preamble	0.4		t _{c_ськ}
	trpst	Read post-amble	0.4		tc_clк
Input DAT (referenced to I	Data Strobe); with respect to V_{OH}/V_{OL} and HS400 reference load	I		
HS4009	t _{RQ}	Output skew		0.4	ns
HS4010	t _{RQH}	Output hold skew		0.4	ns
	SR	Slew rate	1.125		V/ns

Table 3-28 MSDC Timing Characteristics (HS400 mode)

(1) Allowable deviation from an ideal 50% duty cycle. With respect to V_T. Includes jitter and phase noise.

(2) Allowable deviation from the input CLK duty cycle distortion (t_{ck_dd}). With respect to V_T . Includes jitter and phase noise.

Figure 3-35 MSDC Timing Diagram (HS400 Input Mode)

Figure 3-36 MSDC Timing Diagram (HS400 Output Mode)

3.7.2 Serial NOR Flash Controller (SNFC)

3.7.2.1 Overview

A Serial NOR Flash Controller (SNFC) provides convenient access to high-speed serial NOR flash devices. The SNFC supports:

- Single-bit Serial Peripheral Interface (SPI) serial NOR flash
- High-performance dual-bit and quad-bit SPI serial NOR flash

The SPI clock speed can reach up to 52 MHz for the single-bit SPI, dual-bit SPI and quad-bit SPI. The combination of the SNFC and the serial NOR flash is an important component of system bootup and can also replace DRAM, executing within the NOR flash chip (XIP, eXecute in Place). SPI can also complete the access of serial NOR flash. The difference between SPI and SNFC is that the SNFC is specifically tailored for NOR flash memory, making it more efficient.

3.7.2.2 Features

- SPI bus compatible serial interface for common serial NOR flash devices.
- Maps out a 512-byte page program buffer and supports multi-page programs.
- Supports the SPI mode (single-bit) to transfer page program and 1-byte program.
- Supports the 4-byte address mode; 3-byte address mode compatible.
- Supports single-bit read, dual output and dual I/O read, as well as quad output and quad I/O read mode.

- Reads serial NOR flash data through the direct read, PIO (Programmed Input/Output) read, or DMA read mode.
- Supports serial NOR flash device frequency of up to 52 MHz.
- Supports serial NOR flash devices MX25U25645G and W25Q256JW.

3.7.2.3 Block Diagram

Figure 3-37 Block Diagram of SNFC

Figure 3-37 illustrates the block diagram of the SNFC, which includes the following.

Module	Description
SNFC_Regs	Register control module, which allows the system master to access controller registers through the
SNPC_Negs	APB interface.
	Allocates a buffer with a size of 128 x 32 bits for the reading and programming processes.
	• During the reading process, data is first transferred to the buffer and then sent to the read
SNFC_Prefetch	master.
	• In the programming process, the entire page data should be written to the buffer, and the
	SNFC delivers the data to the serial NOR flash device after the page program is triggered.
SNFC_Arb	Employs an arbitration mechanism when Direct_Read_Map and SNFC_DMA access the serial NOR
SNPC_AD	flash device simultaneously.
	A hardware engine that automatically reads data from the serial NOR flash and writes data to the
SNFC_DMA	SRAM through the AXI bus. The CPU must configure the source address and start and end
	destination addresses through the SNFC_Regs module before the DMA, SNFC_DMA, starts.

Table 3-29 SNFC Modules

Module	Description
Direct_Read_Map	Translates the AXI master address and serial NOR flash memory address, and is responsible for
Direct_Read_Map	returning data to the CPU through the AXI master.

3.7.2.4 Function Description

The SNFC integrates commonly used serial NOR flash operations commands, enabling convenient access to the serial NOR flash. Even without any configuration, it can directly read data from the serial NOR flash. In addition to the conventional reading, the SNFC also supports writing to the serial NOR flash, and configuring serial NOR flash operations.

The SNFC handles all commands, addresses, data sequences and serial interface protocols. It allows reading of serial NOR flash in three ways as stated in Table 3-30.

Mode	Description
PIO read mode	The CPU can program the control registers, SNFC_Regs, in a specific sequence and obtain the serial NOR flash data through the APB. This mode is usually used for reading few-byte data.
DMA read mode	The SNFC_DMA copies serial NOR flash data to the SRAM through the AXI bus.
Direct read mode	The CPU can directly read serial flash data through the AXI bus by the address offset.

Table 3-30 Methods to Read Serial NOR Flash

The SNFC supports the following two ways to write to the serial NOR flash.

Table 3-31 Methods to Write Serial NOR Flash

Mode	Description
PIO write	The CPU can control the registers in a specific order through the APB, enabling single-byte write
mode	operations on the serial NOR flash. This mode is usually used for writing few-byte dates.
Buff write	The CPU can write data to the SNFC buffer, which holds up to 512 bytes at a time, via the APB to write
	to a specific register and initiate the transfer. The SNFC can write all data less than 512 bytes at once
mode	to the specified address space of the serial NOR flash.

3.7.2.5 Theory of Operations

3.7.2.5.1 Read Serial NOR Flash ID

This operation reads the JEDEC ID of the serial NOR flash, including the 1-byte manufacturer ID and 2-byte device ID. The operation sequence is illustrated in Figure 3-38, and the programming flow is in Table 3-32.

Figure 3-38 Read ID (RDID) Operation Sequence

Step	Address	Register Name	Local Address	R/W	Value	Description
1	SF_Base+0xc4	REG_SF_WRPORT	REG_SF_WRPORT[7:0]	w	8'h30	Turn off the controller operation protection (only set once after the controller is reset).
2	SF_Base+0x34	REG_SF_PRGDATA5	REG_SF_PRGDATA5[7:0]	W	8'h9f	Write the operation command of RDID.
3	SF_Base+0x30	REG_SF_PRGDATA4	REG_SF_PRGDATA4[7:0]	W	8'h00	Write dummy data.
4	SF_Base+0x2c	REG_SF_PRGDATA3	REG_SF_PRGDATA3[7:0]	W	8'h00	Write dummy data.
5	SF_Base+0x28	REG_SF_PRGDATA2	REG_SF_PRGDATA2[7:0]	W	8'h00	Write dummy data.
6	SF_Base+0x04	REG_SF_CNT	REG_SF_CNT[5:0]	W	6'h21	Write the process cycle count.
7	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	W	1'b1	Trigger the controller (send the RDID operation sequence to the serial NOR flash).
8	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	R	1'b0	When this bit is 1'b0, the controller processing is done.
9	SF_Base+0x38	REG_SF_SHREG0	REG_SF_SHREG0[7:0]	R		Read the JEDEC ID (device ID - LowByte)
10	SF_Base+0x3c	REG_SF_SHREG1	REG_SF_SHREG1[7:0]	R		Read the JEDEC ID (device ID - HighByte)
11	SF_Base+0x40	REG_SF_SHREG2	REG_SF_SHREG2[7:0]	R		Read the JEDEC ID (manufacturer ID)

Table 3-32 Read ID (RDID) Operation Programming Flow

3.7.2.5.2 Erase Serial NOR Flash

The SNFC facilitates three erase operations, namely Sector Erase, Block Erase and Chip Erase, for serial NOR flash. These erase operations are executed to clear the data of designated part to "1". However, before you send the erase command, it is important to execute a WREN (WRITE enable) instruction that sets the WEL (Write Enable Latch).

The Sector Erase command is used for a 4KB sector, while the Block Erase command is used for a 64KB block, and the Chip Erase command for the entire serial NOR flash. The erase-command formats are as follows.

Table 3-33 Erase-command Formats

Erase Method	Format	Operation Sequence	Programming Flow					
Section Erase	8-bit operation code (0x20) followed by the 24-bit or							
Section Llase	32-bit address.	5 mm 2 20	T-1-1-2-24					
Block Erase	8-bit operation code (0xd8) followed by the 24-bit or	Figure 3-39	Table 3-34					
BIOCK LIASE	32-bit address.							
Chip Erase	8-bit operation code (0xc7)	Figure 3-40	Table 3-35					

Figure 3-39 Sector Erase and Block Erase Operation Sequence

Step	Address	Register Name	Local Address	R/W	Value	Description
1	SF_Base+0x34	REG_SF_PRGDATA5	REG_SF_PRGDATA5[7:0]	w	8'h20 or 8'hd8	Write the operation command of Sector Erase (0x20) or Block Erase (0xd8).
2	SF_Base+0x30	REG_SF_PRGDATA4	REG_SF_PRGDATA4[7:0]	W	addr[31:24]	Write erase address bit31:bit24. This register only needs to be set when it is in 4-byte address mode.
3	SF_Base+0x2c	REG_SF_PRGDATA3	REG_SF_PRGDATA3[7:0]	W	addr[23:16]	Write erase address bit23:bit16.
4	SF_Base+0x28	REG_SF_PRGDATA2	REG_SF_PRGDATA2[7:0]	W	addr[15:8]	Write erase address bit15:bit8.
5	SF_Base+0x24	REG_SF_PRGDATA1	REG_SF_PRGDATA1[7:0]	W	addr[7:0]	Write erase address bit7:bit0.
6	SF_Base+0x04	REG_SF_CNT	REG_SF_CNT[5:0]	W	6'h20 or 6'h28	Write the process cycle count: Set 0x20 for 3-byte address mode. Set 0x28 for 4-byte address mode.

Table 3-34 Sector Erase and Block Erase Operation Programming Flow

Step	Address	Register Name	Local Address	R/W	Value	Description
7	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	w	1'b1	Trigger the controller to send the erase operation sequence to the serial NOR flash.
8	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	R	1'b0	When this bit is 1'b0, the controller processing is done.
9	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[1]	w	1'b1	(Polling serial NOR flash status) Send read flash status command to serial NOR flash.
10	SF_Base+0x08	REG_SF_RDSR	REG_SF_RDSR[0]	R	1′b0	(Polling serial NOR flash status) Check whether the WIP (Write in Progress) bit of serial NOR flash status is de-asserted. The erase process is completed when this bit is 0.

Figure 3-40 Chip Erase Operation Sequence

Table 3-35	Chip	Erase	Operation	Prog	rammi	ng Flow	

Step	Address	Register Name	Local Address	R/W	Value	Description
1	SF Base+0x34	REG SF PRGDATA5	REG SF PRGDATA5[7:0]	W	8'hc7	Write the operation command
1	51_Base+0x54	REG_SI_FRODATAS		vv	01107	of Chip Erase.
2	SF_Base+0x04	REG_SF_CNT	REG_SF_CNT[5:0]	W	6'h08	Write the process cycle count.
						Trigger the controller to send
3	SF Base+0x00 REG SF CMD REG SF CMD[2] W 1'	1'b1	the chip erase operation			
5	51_0300			vv	1.01	sequence to the serial NOR
						flash.
4	SF Base+0x00	REG SF CMD	REG SF CMD[2]	R	1'b0	When this bit is 1'b0, the
4	51_Base+0x00			IX.	1 00	controller processing is done.
5	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[1]	W	1'b1	(Polling serial NOR flash status.)

Step	Address	Register Name	Local Address	R/W	Value	Description
						Send read flash status
						command to serial NOR flash
						(Polling serial NOR flash status)
						Check whether the WIP bit of
6	SF_Base+0x08	REG_SF_RDSR	REG_SF_RDSR[0]	R	1'b0	serial NOR flash status is de-
						asserted. The erasing process is
						completed when this bit is 0.

3.7.2.5.3 Program Serial NOR Flash

The programming command is utilized to program the memory to "0". Prior to initiating the programming process, a WREN command must be executed to set the WEL bit. The SNFC supports two kinds of programming operations: Page Program and PIO Program.

Table 3-36 Methods to Program Seiral NOR Flash

Program Method	Description
	The maximum data size of the programming operation is limited to the serial NOR flash page size,
Page Program	which is typically 256 bytes for most devices.
PIO Program	The controller register programs one byte at a time.

Figure 3-41 shows the programming operation sequence.

Figure 3-41 Programming Operation Sequence

Furthermore, there are three cases of the two programming operations mentioned above.

- 1. Entire page programming via the SNFC_Prefetch buffer (Section 3.7.2.6)
- 2. Entire multi-page programming via the SNFC_Prefetch buffer (Section 3.7.2.7)
- 3. Writing data to the serial flash 1 byte at a time (PIO write mode) (Section 3.7.2.8)

3.7.2.6 Entire Page Programming via SNFC_Prefetch Buffer

	Table 3-37 Page Program (PP) Operation Flow								
Step	Address	Register Name	Local Address	R/W	Value	Description			
1	SF_Base+0x64	REG_SF_CFG2	REG_SF_CFG2[0]	w	1'b1	Enable the SNFC_Prefetch buffer for writing.			
2	SF_Base+0x10	REG_SF_RADR0	REG_SF_RADR0[7:0]	W	addr[7:0]	Write address bit7:bit0			
3	SF_Base+0x14	REG_SF_RADR1	REG_SF_RADR1[7:0]	W	addr[15:8]	Write address bit15:bit8			
4	SF_Base+0x18	REG_SF_RADR2	REG_SF_RADR2[7:0]	W	addr[23:16]	Write address bit23:bit16			
5	SF_Base+0xc8	REG_SF_RADR3	REG_SF_RADR3[7:0]	w	addr[31:24]	Write address bit31:bit24. This register only needs to be set when it is in 4-byte address mode.			
6	SF_Base+0x98	REG_SF_PP_DW_ DATA	REG_SF_PP_DW_DATA[31:0]	W	Data[31:0]	Fill the SNFC_Prefetch buffer by writing program data to this register. Loop N times (N indicates that data length imported must be an integer multiple of 32 bytes, and the maximum data length is 256 bytes).			
7	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	w	1'b1	Trigger page program controller process			
8	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	R	1'b0	When this bit is 1'b0, the controller processing is done.			
9	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[1]	W	1'b1	Polling serial NOR flash status. Send read flash status command to serial NOR flash			
10	SF_Base+0x08	REG_SF_RDSR	REG_SF_RDSR[0]	R	1′b0	Polling serial NOR flash status. Check whether the WIP bit of serial NOR flash status is de-asserted or not. The page program processing is completed when this bit is 0.			

Table 3-37 Page Program (PP) Operation Flow

3.7.2.7 Entire Multi-Page Programming via SNFC_Prefetch Buffer

	Table 3-38 Multi-Page Program (MPP) Operation Flow								
Step	Address	Register Name	Local Address	R/W	Value	Description			
1	SF_Base+0x64	REG_SF_CFG2	REG_SF_CFG2[0]	w	1'b1	Enable the SNFC_Prefetch buffer for writing.			
2	SF_Base+0x10	REG_SF_RADR0	REG_SF_RADR0[7:0]	W	addr[7:0]	Write program address bit7:bit0			
3	SF_Base+0x14	REG_SF_RADR1	REG_SF_RADR1[7:0]	w	addr[15:8]	Write program address bit15:bit8			
4	SF_Base+0x18	REG_SF_RADR2	REG_SF_RADR2[7:0]	w	addr[23:16]	Write program address bit23:bit16			
5	SF_Base+0xc8	REG_SF_RADR3	REG_SF_RADR3[7:0]	w	addr[31:24]	Write program address bit31:bit24. This register only needs to be set when it is in 4-byte address mode.			
6	SF_Base+0x72c	REG_SF_PAGECNT	REG_SF_PAGECNT[7:0]	W	page_cnt[7:0]	Set the total number of pages needed to be programed in SNFC_Prefetch buffer			
7	SF_Base+0x730	REG_SF_PAGESIZE	REG_SF_PAGESIZE[7:0]	w	page_size[7:0]	Set the page size of serial NOR flash			
8	SF_Base+0x734	REG_MPP_EN	REG_MPP_EN[0]	W	1'b1	Enable MPP function			
9	SF_Base+0x98	REG_SF_PP_DW_ DATA	REG_SF_PP_DW_DATA [31:0]	w	data[31:0]	Fill the SNFC_Prefetch buffer by writing program data to this register. Loop N times. (N indicates that the data length imported must be an integer multiple of 32 bytes. The maximum data length is 512 bytes).			
10	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[7]	w	1'b1	Address increases automatically when programming; keep this bit high during the entire programming process			
11	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	w	1'b1	Trigger multi-page program controller process			
12	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	R	1′b0	When this bit is 1'b0, the controller processing is done.			
13	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[1]	w	1'b1	Polling serial NOR flash status.			

Table 3-38 Multi-Page Program (MPP) Operation Flow

© 2023-2024 MediaTek Inc. All rights reserved.

Step	Address	Register Name	Local Address	R/W	Value	Description
						Send read flash status
						command to serial NOR
						flash
						Polling serial NOR flash
						status.
						Confirm whether the WIP
						bit of serial NOR flash
14	SF_Base+0x08	REG_SF_RDSR	REG_SF_RDSR[0]	R	1'b0	status is de-asserted or
						not. The multi-page
						program processing is
						completed when this bit is
						0.

3.7.2.8 Write Data to Serial Flash of 1 Byte (PIO Write Mode)

	Tuble 5-59 FIG Write Operation Frogramming Fiow						
Step	Address	Register Name	Local Address	R/W	Value	Description	
1	SF_Base+0x1c	REG_SF_WDATA	REG_SF_WDATA[7:0]	W	data[7:0]	One byte data needs to be	
						programed.	
2	SF_Base+0x10	REG_SF_RADR0	REG_SF_RADR0[7:0]	W	addr[7:0]	Write program address bit7:bit0	
3	SF_Base+0x14	REG_SF_RADR1	REG_SF_RADR1[7:0]	W	addr[15:8]	Write program address bit15:bit8	
4	SF_Base+0x18	REG_SF_RADR2	REG_SF_RADR2[7:0]	W	addr[23:16]	Write program address bit23:bit16	
5	SF_Base+0xc8	REG_SF_RADR3	REG_SF_RADR3[7:0]	W	addr[31:24]	Write program address bit31:bit24.	
						This register only needs to be	
						programed when in 4-byte address	
						mode.	
6	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	W	1'b1	Trigger the PIO write controller.	
7	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[4]	R	1'b0	When this bit is 1'b0, the controller	
						processing is done.	
8	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[1]	w	1'b1	Polling serial NOR flash status. Send	
						read flash status command to serial	
						NOR flash	
9	SF_Base+0x08	REG_SF_RDSR	REG_SF_RDSR[0]		1'b0	Polling serial NOR flash status.	
				R		Confirm whether the WIP bit of serial	
						NOR flash status is de-asserted or not.	
						The PIO write process is completed	
						when this bit is 0.	

Table 3-39 PIO Write Operation Programming Flow

3.7.2.8.1 Read Flash

The SNFC provides three modes for reading data from the flash device:

• PIO read mode (Section 3.7.2.9)

- DMA read mode (Section 3.7.2.10)
- Direct read mode (Section 3.7.2.11)

The standard SPI link format is combined with command, address and data bytes. The read operation format and sequence of the single-bit SPI mode is depicted in Figure 3-42. Additionally, the controller supports dual output, dual I/O, quad output, and quad I/O read modes. For the corresponding register configuration, refer to *REG_SF_DUAL (SF_Base+0xcc)* in Section 3.7.2.12.5.

For a 4-byte address, set LARGE_ADDR_EN (SF_Base+0xcc [4]) to enable the address cycle to increase from 24 bits to 32 bits.

3.7.2.9 PIO Read Mode

Step	Address	Register Name	Local Address	R/W	Value	Description
1	SF_Base+0x10	REG_SF_RADR0	REG_SF_RADR0[7:0]	W	addr[7:0]	Write read start address bit7:bit0
2	SF_Base+0x14	REG_SF_RADR1	REG_SF_RADR1[7:0]	W	addr[15:8]	Write read start address
						bit15:bit8
3	SF_Base+0x18	REG_SF_RADR2	REG_SF_RADR2[7:0]	W	addr[23:16]	Write read start address
						bit23:bit16
	SF_Base+0xc8	REG_SF_RADR3	REG_SF_RADR3[7:0]	w	addr[31:24]	Write read start address
4						bit31:bit24. This register only
						needs to be programed when in
						4-byte address mode.
5	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[7]	W	1'b1	Address increases automatically
						in the PIO mode.
6	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[0]	W	1'b1	Trigger the controller in the PIO
						mode.
7	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[0]	R	1'b0	When this bit is 1'b0, the
						controller processing is done.
8	SF_Base+0x0c	REG_SF_RDATA	REG_SF_RDATA[7:0]	R	data[7:0]	Get the serial NOR flash data
						(one byte).
3.7.2.10 DMA Read Mode

The hardware engine supports copying data from the serial NOR flash to the SRAM via SNFC_DMA. Prior to triggering SNFC_DMA, the source address, destination start address and end address must be appropriately configured. Once initiated, the hardware engine automatically copies data from the serial NOR flash device to the designated destination address.

Step	Address	Register Name	Local Address	R/W	Value	Description
1	SF Base+0x71C	REG_FDMA_FADR	REG_FDMA_FADR[31:0]	W	src addr[31:0]	Set the DMA source
1		REG_FDIVIA_FADR		vv		address.
						Set the DMA
2	SF_Base+0x720	REG_FDMA_DADR	REG_FDMA_DADR[31:4]	W	des_addr[31:4]	destination start
						address.
		REG_FDMA_END_	REG_FDMA_END_DADR		des_end_addr	Set the DMA
3	SF_Base+0x724	DADR	[31:4]	W	[31:4]	destination end
		DADIN	[51.4]		[51.4]	address.
4	SF Base+0x718	REG FDMA CTL	REG FDMA CTL[0]	W	1'b1	Trigger the DMA
-	51_5030107710			~	101	module process.
						Poll the trigger bit as 0
5	SF Base+0x718	REG FDMA CTL	REG_FDMA_CTL[0]	R	1'b0	to indicate that the
	51_5036+07710			IX.	1 00	DMA processing is
						completed.

Table 3-41 DMA Read Operation Programming Flow

3.7.2.11 Direct Read Mode

The CPU can directly read serial NOR flash data through the AXI bus. For instance, the CPU can directly issue the data address and length, and the SNFC returns the corresponding data. The application supports the following operations:

- The system executes the memory copy function via the CPU data instruction.
- The system DMA (e.g., Crypto DMA) requests serial NOR flash data.

3.7.2.12 Quad-Bit Read Mode

The SNFC supports the quad-bit SPI read mode to enhance read performance, which includes the quad output mode and quad I/O read mode. The format is similar to the single-bit SPI link format, with the addition of a dummy cycle. This format comprises of:

- Command
- Address (quad output single-bit; quad I/O quad-bit)
- Dummy cycle (quad output for at least eight dummy cycles; quad I/O for at least six dummy cycles)
- Data

Note that the definition of the QE (Quad Enable) bit mentioned in this section may differ based on the flash vendor. Refer to Serial NOR Flash Datasheet for more information, such as the MX25L25635F series and the W25Q256JW series.

The differences in the address and dummy cycle format between the quad output and quad I/O are illustrated in Figure 3-43 and Figure 3-44, respectively.

Figure 3-44 Quad I/O Read Mode Sequence (Address Sent in the 4-bit Mode)

3.7.2.12.1.1.1 Enter Quad-Bit Read Mode

To enter the quad-bit read mode, refer to the programming flow as below:

- 1. Enable the QE bit of the serial NOR flash.
- 2. Set REG_SF_DUAL (SF_Base+0xcc) [3] and [2] = 1b'1 to enable the SNFC quad-bit mode.

3.7.2.12.1.1.2 Exit Quad-Bit Read Mode

To exit the quad-bit read mode, refer to the programming flow as below:

- 1. Set REG_SF_DUAL (SF_Base+0xcc)[3] and [2] = 1b'0 to disable the SNFC quad-bit mode.
- 2. Disable the QE bit of the serial NOR flash.

3.7.2.12.1.2 Quad-Byte Address Mode

For most serial NOR flash devices, the default address is a 3-byte address. The following sections introduce how to enter and exit space larger than 16MB.

3.7.2.12.1.2.1 Enter Quad-Byte Address Mode

	Tuble 5 42 Effet Quu byte Auress moue operation rogramming now										
Step	Address	Register Name	Local Address	R/W	Value	Description					
1	SF_Base+0x34	REG_SF_PRGDATA5	REG_SF_PRGDATA5[7:0]	W	8'hb7	Write the operation command of entering quad-byte address mode.					
2	SF_Base+0x04	REG_SF_CNT	REG_SF_CNT[5:0]	W	6'h08	Write the process cycle count.					
3	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	W	1'b1	Trigger the controller process (send OP Code to serial NOR flash).					
4	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	R	1'b0	When this bit is 1'b0, the controller processing is done.					
5	SF_Base+0xcc	REG_SF_DUAL	REG_SF_DUAL[4]	W	1'b1	Enable controller quad-byte address mode					

Table 3-42 Enter Quad-byte Address Mode Operation Programming Flow

3.7.2.12.1.2.2 Exit Quad-Byte Address Mode

Table 3-43 Exit Quad-byte Address Mode Operation Programming Flow

Step	Address	Register Name	Local Address	R/W	Value	Description					
1			REG SF DUAL[4]	W	1'b0	Disable the controller quad-					
	SF_Base+0xcc	REG_SF_DUAL	KEG_SF_DOAL[4]	vv	1 00	byte address mode.					
						Write the operation command					
2	SF_Base+0x34	REG_SF_PRGDATA5	REG_SF_PRGDATA5[7:0]	W	8'he9	of exiting quad-byte address					
						mode.					
3	SF_Base+0x04	REG_SF_CNT	REG_SF_CNT[5:0]	W	6'h08	Write the process cycle count.					
						Trigger the controller process					
4	SF_Base+0x00	REG_SF_CMD	REG_SF_CMD[2]	W	1'b1	(send OP Code to serial NOR					
						flash).					
5	SF Base+0x00	REG SF CMD	REG SF CMD[2]	R	1'b0	When this bit is 1'b0, the					
5	SF_Base+0x00			ň	1 00	controller processing is done.					

3.7.2.12.1.3 Recovery Sequence

To avoid synchronization problems between the SNFC and serial NOR flash device following an entire chip reset, refer to the planned recovery sequence as follows:

1. Release power down (OP code 0xab, SPI) to wake up the serial NOR flash device and avoid entering the power down mode.

MEDIATEK

- 2. Perform a software reset of the device (OP code 0x66/0x99, SPI) to reset the serial NOR flash device.
- 3. Initialize the serial NOR flash device by reading the JEDEC ID and detecting the serial NOR flash type.
- 4. Disable the serial NOR flash protection and send WRSR (OP code 0x01) to clear the protection bit.
- 5. Determine whether to enter the quad-byte address mode or not (OP Code 0xb7), depending on the serial NOR flash size (>16MB).
- 6. Set the serial NOR flash operation mode (SPI/SPI-D/SPI-Q) and enable or disable the QE bit using the WRSR (OP code 0x01) operation.
- 7. Set the SNFC register (including the control bit and OP code setting) for SPI/SPI-D/SPI-Q modes.

3.7.2.12.2 Programming Guide

The SF_Base is a specific physical address at 0x1132C000.

Number	Purpose/Mode	Programming Guide
1	Read serial nor flash ID	Table 3-32
2	Erase serial NOR Flash-sector/block	Table 3-34
3	Erase serial NOR Flash-chip	Table 3-35
4	Program serial NOR flash-PP mode	Table 3-37
5	Program serial NOR flash-MPP mode	Table 3-38
6	Program serial NOR flash-PIO write mode	Table 3-39
7	Read Flash-PIO read mode	Table 3-40
8	Read Flash-DMA read mode	Table 3-41
9	Read Flash-Direct read mode	N/A
10	Enter quad-bit read mode	Section 3.7.2.12.1.1.1
11	Exit quad-bit read mode	Section 3.7.2.12.1.1.2
12	Enter quad-byte address mode	Table 3-42
13	Exit quad-byte address mode	Table 3-43
14	Recovery sequence	Section 3.7.2.12.1.3

Table 3-44 Overall SNFC Programming Guide

3.7.2.12.3 SNOR Signal Descriptions

 Table 3-45 presents SNOR signal descriptions.

Table 3-45 SNOR Signal Descriptions

Signal Name	Туре	Description	Ball Location
SPINOR_CK	DO	SNOR clock	N30
SPINOR_CS	DO	SNOR chip select	N31
SPINOR_IO0	DIO	SNOR I/O data 0 (MOSI)	P30
SPINOR_IO1	DIO	SNOR I/O data 1 (MISO)	N34
SPINOR_IO2	DIO	SNOR I/O data 2 (WP)	P33
SPINOR_IO3	DIO	SNOR I/O data 3 (hold)	P35

© 2023-2024 MediaTek Inc. All rights reserved.

3.7.2.12.4 SNOR Timing Characteristics

Table 3-46 and Figure 3-45 present the SNOR timing characteristics.

No	Parameter ⁽¹⁾	Description	Min	Max	Unit
SNOR01	F _{ck}	SNOR clock (SF_SCLK) frequency	-	52	MHz
SNOR02	D	Duty cycle, SF_SCLK	45	55	%
SNOR03	tclqx	Input setup time	5.776	-	ns
SNOR04	tclqv	Input hold time	-4.337	-	ns
SNOR05	t _d	Output delay	-	0.288	ns
SNOR06	th	Output hold time	-0.011	-	ns
SNOR07	tr_cs/sclk	CS low to SF_SCLK rising edge (read)	1.5/SCLK	9.5/SCLK	ns
SNOR08	tr_sclk/cs	SF_SCLK falling edge to CS high (read)	3/SCLK	10/SCLK	ns

Table 3-46 SNOR Timing Characteristics

(1) The specification is based on the assumed load capacity value of 30 pF.

Figure 3-45 SNOR Timing Diagram

3.7.2.12.5 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.7.2.12.6 Reference

Serial NOR flash datasheets for series such as the MX25L25635F and the W25Q256JW.

3.8 Display

3.8.1 Display Controller

3.8.1.1 **Overview**

The Display Controller, also referred to as VPPSYS, is the abbreviation of "Video Data Processing Pipe Subsystem." It is used to support camera video post processing, video decoder post processing, video preprocessing for video encoder or APU and pixel data processing for Display. The data processing includes resize, sharpen, composition, HDR (High Dynamic

Range), warpage, color, gamma, etc. VPPSYS also contains multiple video IO interfaces, including HDMI_TX, DP_TX, eDP_TX, DSI (Display Serial Interface), and Digital video out.

VPPSYS consists of three hardware parts, SVPP, DVPP, and WPE. S stands for time-share, D stands for display, while WPE is for image warpage. The following sections show the features of each hardware part and the operation modes.

3.8.1.2 Features

SVPP-0 and SVPP-1:

- Read DRAM agent (Supports AFBC, Arm Frame Buffer Compressions)
- Image resizer and sharpness
- Image aspect ratio converter
- Write DRAM agent with image rotation { 90, 180, 270, left right flip } (supports AFBC)
- The max pixel throughput of each SVPP pipe is 420 Mpixels/sec

SVPP-2 and SVPP-3:

- Read DRAM agent (Supports AFBC)
- Film grain noise for supporting AV1 video
- HDR decode (HDR10, HDR10+, HLG)
- Local contrast enhancement
- Image resizer and sharpness
- Preference color enhancement
- Image aspect ratio converter
- Write DRAM agent with image rotation { 90, 180, 270, left right flip } (supports AFBC)
- The max pixel throughput of each SVPP pipe is 420 Mpixels/sec

WPE:

- Backward grid-map based image warpage
- Max map size: 640x640
- Single data processing core that can process 300 Mpixels/sec

DVPP-0:

- 4-layer RGB image compositor
- One display image resizer (up-scaling)
- Preference color adjustment
- Global contrast adjustment
- Display CSC, Gamma, Dither, and Post_mask
- MIPI DSC display data compression
- Single display data processing pipe
- Max image width for each display data processor pipe is 3840 pixels
- Max pixel throughput of each display data processor pipe is 300 Mpixels/sec (Htotal*Vtotal*fps <= 300 Mpixels/s)

DVPP-1:

• Two read DRAM agents (support AFBC) that support Dolby video HDR (Dolby HDR and HDR10+)

- Two read DRAM agents (do not support AFBC) that support Dolby graphic SDR (Standard Dynamic Range) to HDR
- Two display image resizers (up-scaling)
- 4-layer image compositor compliant with Dolby HDR requirements
- The max supported video definition of DVPP-1 is 4K60 (3840x2160x60fps)

Display input and output interfaces:

- HDMI_RX: N/A
- Digital video input: N/A
- DSI_TX: MIPI DSI C(D)PHY combo. Dual link. Max lane speed: 1.6G
- eDP_TX: 2 lanes. Max 5.4 Gbps per lane. 10-bit color. Max 4K30
- DP_TX: DP1.4. 4 lanes. Max 5.4 Gbps per lane. 10-bit color. Max 4K60
- HDMI_TX: HDMI2.0 Max 4K60. Max 12-bit color. Supports VRR and HDR metadata

3.8.1.3 Block Diagram

Figure 3-46 shows the application position of VPPSYS inside the SoC. Figure 3-47 shows the possible application connection of SVPP-x and WPE. Figure 3-48 shows the possible application connection of DVPP-x and Display output interfaces. The best pixel throughput of each display IO interface is also shown in the diagram. Note that only the orange blocks are included in the scope of VPPSYS documentation.

Figure 3-47 Possible Application Connection of SVPP-x and WPE

Figure 3-48 Possible Application Connection of DVPP-x and Display Output Interfaces

3.8.1.4 Function Description

SVPP: It is a multipurpose image data processor. The data input could be from DRAM and WPE. The data output target is DRAM. Main features of SVPP are image-resizer, image-sharpener, HDR decode, composition, and image rotation.

DVPP: There are two kinds of DVPP in VPPSYS. DVPP-0 is for SDR display on integrated display panel (DSI, eDP) or external display (DP, HDMI). DVPP-1 is for HDR (Dolby HDR, HDR10+) external display (DP, HDMI). There is one display data processor inside DVPP-0. DVPP-0 supports conventional display data processor features like color, gamma, dither, while DVPP-1 is dedicated to standard HDR (Dolby HDR, HDR10+) display. Color or gamma tuning has to be merged with HDR data processing.

WPE: It is a free-form image warpage accelerator. The input is the source image and a warpage map. The map is an array of grids in a rectangle arrangement. Each grid contains a backward vector pointing out the coordinate in the source image that needs to be warped to the new position in the destination image. The output of WPE can be an SVPP or DRAM buffer.

3.8.1.5 Theory of Operations

There are three operation modes in VPPSYS, SW mode, Video mode, and DSI-CMD mode. Each data processor hardware (SVPP-x, WPE, DVPP-0, DVPP-1) can be operated in either one of these three operation modes.

SW mode: As the name implies, the software initiates the hardware operation (one image frame), waits for the HW job done signal (INTR) and then updates the hardware setting of the next job and kicks off again.

Video mode: In this operation mode, the hardware operation is tied to the video timing of Video IO interfaces, including HDMI_TX, DSI (video mode), DP_TX, and eDP_TX. The video timing generator inside these video IO blocks will create Vsync and VDE signals for hardware data processor pipe. By these signals, the hardware automatically and repeatedly knows when to start a new image frame. To stop and reset the hardware, the software receives the timing signal, by INTR, to know the period that allows change of hardware settings or information read back.

DSI-CMD mode: This mode is available when using a DSI command mode display panel. A TE (Tearing Effect) signal from the display panel is received by the SoC, which then informs the software by the INTR signal. The software, depending on the necessary system operation, updates the hardware setting with the new image frame, which is going to replace the image data inside the frame buffer in display panel.

3.8.2 Display Serial Interface (DSI)

3.8.2.1 **Overview**

The DSI is based on MIPI Alliance Specification, supporting high-speed serial data transfer between host processor and peripheral devices such as display modules. The device includes two DSI controllers, DSI0 and DSI1. DSI should work with the MIPI_TX_Config module to obtain its engine clock from Analog PHY Macro. And it should work with DMA engines in the previous stage of the display path to read out frame pixels from memory, performs frames packing and lane distribution, and then sends the data to a dedicated MIPI D-PHY/C-PHY TX core for serializing.

3.8.2.2 Features

Each DSI controller provides the following key features:

- Compliance with MIPI DSI Specification v01-02-00
- Supports video and command mode data transfers
- Pixel formats supported: RGB888/RGB101010/compressed pixel stream
- 128-entry command queue for command transmission
- 3 types of video modes: Sync-event, sync-pulse, and burst modes
- Limited high-speed residual packet transmission during video mode blanking period
- Ultra-low power mode control
- Peripheral and external Tearing Effect (TE) signals detection
- MIPI D-PHY interface, with the following features:
 - 1 clock lane and up to 4 data lanes, 2 ports
 - Throughput up to 1.2 Gbps per data lane
 - Bi-directional data transmission in Low-Power mode for data lane 0
 - Uni-directional data transmission in High-Speed mode for data lanes 0 through 3
 - Non-continuous high-speed transmission for clock and data lanes
 - Lane swapping
 - Compliance with MIPI D-PHY Specification v1.1
- MIPI C-PHY interface, with the following features:
 - Single 3-trio, 2 ports
 - Throughput up to 1.1 Gsps per trio
 - Trio swapping
 - Compliance with MIPI C-PHY Specification v1.0
- Each D-PHY/C-PHY TX core provides the following main features:
 - Sigma-Delta Modulation (SDM) PLL configuration
 - Spread Spectrum Clocking (SSC) control

3.8.2.3 Block Diagram

Figure 3-49 shows the block diagram of DSI modules. The whole DSI block is constructed by the DSI controller, PHY digital controller and analog PHY macro. The DSI controller implements MIPI DSI application and protocol layers, which mainly focus on packet format, checksum, ECC (Error Correction Code) generation, etc. The MIPI TX configuration module, or

called MIPI_TX_Config here, is used to control MIPI TX related registers for lane swap function and analog PHY macro. Lane swap function in MIPI_TX_Config is used to select the order of data and clock lanes. Analog PHY macro converts digital signals to analog signals.

Figure 3-49 DSI Module Block Diagram

3.8.2.4 Function Description

3.8.2.4.1 Size Control

The horizontal size of input data received by DSI is defined by DSI register DSI_WIDTH[14:0]. The unit of DSI_WIDTH[14:0] is pixel. The vertical size of input data received by DSI is defined by DSI register DSI_HEIGHT[14:0]. The unit of DSI_HEIGHT[14:0] is line. The payload length transferred by DSI is defined by DSI register PS_WC[14:0]. The unit of PS_WC[14:0] is byte. The line number transferred by DSI is defined by DSI register VACT_NL[14:0]. The unit of VACT_NL[14:0] is line.

The PS_WC[14:0] is calculated according to DSI_WIDTH[14:0] and PS_SEL[3:0]. The formula of PS_WC[14:0] are DSI_WIDTH[14:0]*(24/8) for RGB888,

DSI_WIDTH[14:0]*(30/8) for RGB101010,

DSI_WIDTH]14:0]*(24/8) – n for compress (n=0,1,2, payload length sometimes may not be a multiple of three after DSC compression)

3.8.2.4.2 Data Format Control

DSI supports RGB888, RGB101010 and compress mode. The data format is defined by DSI register PS_SEL[3:0](3: RGB888, 4: RGB101010, 5: compress). The compress mode is used in DSC compress.

3.8.2.4.3 Mode Control

DSI supports video and command mode, which is defined by the DSI register MODE_CON[1:0]. 2'b00: command mode

2'b01: video mode: sync-pulse mode 2'b10: video mode: sync-event mode 2'b11: video mode: burst mode

DSI also supports D-PHY or C-PHY transmission, which is defined by the DSI register CPHY_EN. 0: DPHY mode 1: CPHY mode

3.8.2.4.4 Lane Number Control

DSI supports one to four lanes for D-PHY transmission. DSI supports one to three trios for C-PHY transmission, which is defined by DSI register LANE_NUM[3:0]. 4'b0001: 1 lane or 1 trio 4'b0011: 2 lanes or 2 trios 4'b0111: 3 lanes or 3 trios 4'b1111: 4 lanes

3.8.2.5 Theory of Operations

MediaTek DSI peripherals support either of two basic modes of operation: command mode and video mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnection, but they are not intended to restrict DSI from operating in other applications.

3.8.2.5.1 Command Mode

Command mode refers to an operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, which incorporates a display controller. In command mode, long and short packets can be sent to the peripheral, and data can be read/written from/to frame buffer of the peripheral. Command mode operation requires a bidirectional interface.

3.8.2.5.2 Video Mode

Video mode refers to an operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. Video information should only be transmitted using HS mode. In video mode, sync-event, sync-pulse and burst modes are supported. These terms are used throughout the following sections:

- Sync-Pulse Enables the peripheral to accurately reconstruct original video timing, including sync pulse widths.
- Sync-Event Similar to the one above, but accurate reconstruction of sync pulse widths is not required.
- Burst Mode RGB pixel packets are time-compressed, leaving more time during a scan line for LP mode (saving power) or for multiplexing other transmissions onto the DSI link.

Detailed timing and packet sequence are shown in Figure 3-51, Figure 3-52 and Figure 3-53. Transmission packet components used in Figure 3-51, Figure 3-52, and Figure 3-53 are defined in Figure 3-50.

Figure 3-51 Video Mode Interface Timing: Non-burst Mode with Sync Pulses

Figure 3-52 Video Mode Interface Timing: Non-burst Mode with Sync Events

Figure 3-53 Video Mode Interface Timing: Burst Mode

3.8.2.6 Programming Guide

3.8.2.6.1 Initialization

Figure 3-54 illustrates the waveform of the initialization sequence to enable the DSI analog block and power up the DSI analog block's PLL. Follow the steps described in Table 3-47 to achieve the initialization sequence.

If Efuse option is realized, please read the Efuse results and write to DSI_*_RTCODE0~4 before RG_DSI_BG_CORE_EN is asserted.

_									
Read out Efuse results	Бъххххх								
Write to DSI_*_RTCODE0~4	5'b10000	БРХХХХХ	51	DXXXXX					
RG_DSI_BG_CORE_EN			>1us				1 1 1 1		
RG_DSI_BG_LPF_EN							1 		
 RG_DSI_PLL_SDM_PCW[31:0] 				X	χ		 		
AD_DSI_PLL_SDM_PWR_ON (controlled by RG)			, F	>30n:	s;	>1us	। । । भ		
DA_DSI_PLL_SDM_PWR_ACK							 		
AD_DSI_PLL_SDM_ISO_EN (controlled by RG)									
RG_DSI_PLL_EN Must have a low-to-high transition. —							> 30ns > 20us for PLL settling time		> 30ns
LPTX_PRE_OE (Hardware control power on & be normal operation)	gin							Normal operation after PLL is settled.	1

Figure 3-54 Timing Chart of Initialization Sequence

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Read out eFuse result and write it to impedance RG	W	DSI_*_RTCODE0~4		<u>0 x *00[0]</u> ~ <u>0 x *24[0]</u> *: 1~5
2	Lane CK mode configuration	W	DSI_*_CKMODE_MODE	1	<u>0 x *28[0]</u> *: 1~5
3	Enable BG core power	W	RG_DSI_BG_CORE_EN	1	<u>0 x 00c[7]</u>
4	Wait for 1 µs				
5	Enable BG LP filter	W	RG_DSI_BG_LPF_EN	1	<u>0 x 00c[6]</u>
6	Wait for 30 ns				
7	Enable PLL power	W	AD_DSI_PLL_SDM_PWR_ON	1	<u>0 x 028[0]</u>
8	Enable PLL power isolation	W	AD_DSI_PLL_SDM_ISO_EN	1	<u>0 x 028[1]</u>
9	Wait for 1 µs				
10	Disable PLL isolation	W	AD_DSI_PLL_SDM_ISO_EN	0	<u>0 x 028[1]</u>
11	Wait for 30 ns				
12	Set SDM_PCW by data rate	W	RG_DSI_PLL_SDM_PCW	-	<u>0 x 02C</u>
13	Set POST_DIV by data rate	W	RG_DSI_PLL_POSDIV	-	<u>0 x 030[10:8]</u>
14	Wait for 1 µs				
15	Enable PLL	W	RG_DSI_PLL_EN	1	<u>0 x 030[4]</u>
16	Wait for 20 µs				
17	DSI analog block initialization is done.				

Table 3-47 MIPI D-PHY Initialization Programming Sequence

Note:

• The addresses with an underline are MIPI_TX_Config REG, and the addresses without an underline are DSI REG.

3.8.2.6.2 Power Off Sequence

If DSI goes into suspend mode or power saving mode, you can power off the DSI analog block. Figure 3-55 illustrates the waveform of the power-off sequence to disable the DSI analog block and power off the DSI analog block's PLL. The power-off programming steps are listed in Table 3-48. To avoid unexpected power consumption, make sure that all registers are in the default settings.

LPTX_PRE_OE (Hardware control power off)	Normal operation ends & DSI analog Lilock power off
RG_DSI_PLL_SDM_PCW_CHG Must be 1'b1 while enabling PLL AD_DSI_PLL_SDM_PWR_ON (controlled by RG)	> 30ns
DA_DSI_PLL_SDM_PWR_ACK	
AD_DSI_PLL_SDM_ISO_EN (controlled by RG)	
RG_DSI_PLL_EN	> 30ns → 30ns →
RG_DSI_BG_CORE_EN	
RG_DSI_BG_LPF_EN	

Figure 3-55 Timing Chart of Power-off Sequence

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Turn off all data lanes	W	LANE_NUM	0 x 0	0 x 018[5:2]
2	Wait for 30 ns				
3	Disable PLL	W	RG_DSI_PLL_EN	0	<u>0 x 030[4]</u>
4	Enable PLL isolation	W	AD_DSI_PLL_SDM_ISO_EN	1	<u>0 x 028[1]</u>
5	Wait for 30 ns				
6	Disable PLL power	W	AD_DSI_PLL_SDM_PWR_ON	0	<u>0 x 028[0]</u>
7	Wait for 30 ns				
8	Disable BG LP filter	W	RG_DSI_BG_LPF_EN	0	<u>0 x 00c[6]</u>
9	Disable BG core power	W	RG_DSI_BG_CORE_EN	0	<u>0 x 00c[7]</u>
10	DSI analog block power off done				

Table 3-48 D-PHY Power-off Programming Sequence

Note:

• The addresses with an underline are MIPI_TX_Config REG, and the addresses without an underline are DSI REG.

3.8.2.6.3 Timing Control

3.8.2.6.3.1 PHY Timing Control

All of the timing parameters defined in the MIPI specification should be properly set in the DSI controller programmable registers for correct timing control. The written value is based on the DSI internal clock cycle period, which is related to DSI analog block PLL clock settings through MIPI TX Config engine. And the written value cannot be zero.

For example, the D-PHY timing parameter $T_{HS-PREPARE}$ must be between 40 ns + 4 * UI and 85 ns + 6 * UI, where UI means time interval, which is equal to the duration of any HS state on clock lane. If the clock lane is set to 500 MHz frequency, as well as bit-rate 1 Gbps, the UI should be 1 ns. In other words, the value of $T_{HS-PREPARE}$ must between 44 and 91 ns. The internal DSI clock is 8x divided by data rate, as well as 125 MHz. To satisfy $T_{HS-PREPARE}$, the register value DA_HS_PREP should be 6 to 11 (see Table 3-49).

Table 3-49 D-PHY Timing Parameters Register Setting

	Timing Specification	Absolute Time for UI: 1 ns	DA_HS_PREP Value		
T _{HS-PREPARE}	40 ns + 4 * UI~85 ns + 6 * UI	44 to 91 ns	6 to 11		

3.8.2.6.3.2 D-PHY PHY Timing Control

Table 3-50 lists the D-PHY timing parameters that should be configured in the DSI registers. Note that for different bit-rate requirements, the UI values vary. For more precise timing control, select DSI internal clock as fast as possible. However, the faster DSI internal clock is set, the more power is wasted. A suitable clock is beneficial to the optimization of system power consumption.

Parameter	Description	Min	Max	Unit
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and		60	20
I CLK-MISS	disable the Clock Lane HS-RX.		Max 60 95 300 38 38 38 38 4*UI 105 ns + 105 ns + n*12*UI 105 ns + 6*UI	ns
	Time that the transmitter continues to send HS clock after the			
T _{CLK-POST}	last associated Data Lane has transitioned to LP Mode. Interval is	60 ns +		ns
I CLK-POST	defined as the period from the end of $T_{\mbox{\scriptsize HS-TRAIL}}$ to the beginning	52*UI		115
	of T _{CLK-TRAIL} .			
	Time that the HS clock shall be driven by the transmitter prior to			
T _{CLK} -pre	any associated Data Lane beginning the transition from LP to HS	8		UI
	mode.	60 ns + 52*UI 60 60 ns + 52*UI 1 8 95 1 38 95 1 38 95 300 1 105 ns + 3300 1 1 105 ns + 105 ns + 1 1 100 105 ns + 1 1 100 105 ns + 1 1 100 105 ns + 1 1		
	Time that the transmitter drives the Clock Lane LP-00 Line state			
T _{CLK} -prepare	immediately before the HS-0 Line state starting the HS	38	95	ns
	transmission.		60 95 300 38 38 38 38 38 38 38 38 38 38 38 38 38	
	Time interval during which the HS receiver should ignore any			
T _{CLK} -settle	Clock Lane HS transitions, starting from the beginning of $T_{\mbox{\tiny CLK-}}$	95	300	ns
	PREPARE			
	Time for the Clock Lane receiver to enable the HS line	Time for Dn		
T _{CLK-TERM-EN}	termination, starting from the time point when Dn crosses	to reach	38	ns
	VIL,MAX.	V _{TERM-EN}	n	
т	Time that the transmitter drives the HS-0 state after the last	60		
Tclk-trail	payload clock bit of a HS transmission burst.	60		ns
TCLK-PREPARE + TCLK-	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior	200		
ZERO	to starting the Clock.	300		ns
	Time for the Data Lane receiver to enable the HS line	Time for Dn	25	
T _{D-TERM-EN}	termination, starting from the time point when Dn crosses	to reach		
	VIL,MAX.	V _{TERM-EN}	4*01	
т.	Transmitted time interval from the start of T _{HS-TRAIL} or T _{CLK-TRAIL} , to		105 ns +	
Τεοτ	the start of the LP-11 state following a HS burst.		n*12*UI	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100		ns
	Time that the transmitter drives the Data Lane LP-00 Line state		0.5	
THS-PREPARE	immediately before the HS-0 Line state starting the HS	40 ns + 4*UI		ns
	transmission		300 38 35 ns + 4*UI 105 ns + n*12*UI 85 ns +	

Table 3-50 D-PHY Global Operation Timing Parameter Defined by MIPI Specification

© 2023-2024 MediaTek Inc. All rights reserved.

Parameter	Description	Min	Max	Unit
Ths-prepare + Ths-zero	$T_{\text{HS-PREPARE}}$ + time that the transmitter drives the HS-0 state prior	145 ns +		ns
THS-PREPARE T THS-ZERU	to transmitting the Sync sequence.	10*UI		115
	Time interval during which the HS receiver shall ignore any Data		145 ns + 10*UI	
	Lane HS transitions, starting from the beginning of THS-PREPARE.			
Ths-settle	The HS receiver shall ignore any Data Lane transitions before the	85 ns + 6*UI		ns
	minimum value, and the HS receiver shall respond to any Data		10 01	
	Lane transitions after the maximum value.			
	Time interval during which the HS-RX should ignore any		55 ns + 4*UI	
-	transitions on the Data Lane, following a HS burst. The end point	40		ns
Тнѕ-ѕкір	of the interval is defined as the beginning of the LP-11 state	40		
	following the HS burst.			
	Time that the transmitter drives the flipped differential state	max(n*8*UI,		
T _{HS-TRAIL}		60 ns +		ns
	after last payload data bit of a HS transmission burst	n*4*UI)		
T _{INIT}	Initialization period	100		μs
Tlpx	Transmitted length of any Low-Power state period	50		ns
Ratio TLPX	Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave sides	2/3	3/2	
т	Time that the new transmitter drives the Bridge state (LP-00)			
T _{TA-GET}	after accepting control during a Link Turnaround.	5*T _{LP} ;	K	ns
T	Time that the transmitter drives the Bridge state (LP-00) before	/*T		
T _{TA-GO}	releasing control during a Link Turnaround.	4*T _{LPX}		ns
Tta-sure	Time that the new transmitter waits after the LP-10 state before	1*T	о∗т	20
	transmitting the Bridge state (LP-00) during a Link Turnaround.	1*T _{LPX}	2*T _{LPX}	ns
т	Time that a transmitter drives a Mark-1 state prior to a Stop	1		
Twakeup	state in order to initiate an exit from ULPS.	1		ms

Where n = 1 for Forward-direction HS mode and n = 4 for Reverse-direction HS mode

The registers of D-PHY timing parameters for data lanes and clock lane are illustrated in Figure 3-56 and Figure 3-57, respectively. The registers for BTA (Bus Turnaround) timing are illustrated in Figure 3-58. The unit of them is the clock period of the DSI internal clock.

Figure 3-56 Registers for Data Lane Timing Parameters

Figure 3-57 Registers for Clock Lane Timing Parameters

Figure 3-58 Register for BTA Timing Parameters

3.8.2.6.3.3 C-PHY PHY Timing Control

Table 3-51 lists the C-PHY timing parameters that should be configured in the DSI registers. Note that for different symbolrate requirements, the UI values vary. For example, the UI should be 1 ns when the symbol rate is set to 1Gsps. The internal DSI clock is 7x divided by the symbol rate, as well as 142.8571 MHz.

Parameter	Description	Min	Max	Unit		
T3-prepare	Time that the transmitter drivers the 3-wire LP-000 line state immediately before the HS_+x line state starting the HS transmission.	38	95	ns		
T3-prebegin	The length of the first part of the preamble. T _{3-PREBEGIN} should be adjustable at the transmitter from 7 UI minimum to 448 UI maximum in increments of 7 UI.	7	448	UI		
T3-progseq	The length of the programmable sequence section of the preamble. The length of $T_{3-PROGSEQ}$ can be configured by CPHY_PROGSEQ_SKIP_EN (0: $T_{3-PROGSEQ}$ = 14 UI, 1: $T_{3-PROGSEQ}$ = 0 UI).	0 or 14		UI		

© 2023-2024 MediaTek Inc. All rights reserved.

Parameter	Description		Max	Unit
T _{3-PREEND}	The length of the end of the preamble.	7		UI
T _{3-SYNC}	The length of the Sync Word.	7		UI
T _{3-POST}	The length of the Post sequence at the end of the burst. T _{3-POST} should be adjustable from 7 UI minimum to 224 UI maximum in increments of 7 UI.	7 224		UI
Ths_exit	Time that the transmitter drives LP-111 following a HS burst.	100		ns
T _{LPX}	Transmitted length of any low-power state period	50		ns
T _{A-GET}	Time that the new transmitter drives the bridge state (LP-000) after accepting control during a link turnaround	5*TLPX		ns
T _{TA-GO}	TA-GO Time that the transmitter drives the bridge state (LP-000) before releasing control during a link turnaround.		Γ _{lpx}	ns
T _{TA-SURE}	Time that the new transmitter waits after the LP-100 state before transmitting the bridge state (LP-000) during a link turnaround.	TLPX 2*TLPX		ns
Twakeup	^{UP} Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit from ULPS.			ms

The registers of C-PHY timing parameters for data lanes and clock lane are illustrated in Figure 3-59. The registers for BTA timing are illustrated in Figure 3-58. The unit of them is the clock period of the DSI internal clock.

Figure 3-59 Registers for C-PHY Timing Parameters

3.8.2.6.3.4 Video Mode Timing

DSI supports video mode traffic sequences, including sync pulse mode, sync event mode and burst mode. To facilitate the translation of the parameters of packets, see the timing diagrams below for the corresponding register settings. The DSI register of VSA_NL, VBP_NL, VACT_NL and VFP_NL are used to control the line numbers, and the unit is number of lines. The ranges of HSA (HPW), HBP, and HFP are specified by DDIC, and the unit is pixel. They are controlled by the DSI register of DSI_HSA_WC, DSI_HBP_WC and DSI_HFP_WC. The unit of DSI_*_WC is byte (8 bits).

3.8.2.6.3.4.1 Non-Burst with Sync-Pulse Mode

A non-burst sync-pulse mode enables the peripheral to accurately reconstruct original video timing, including sync pulse widths. A timing diagram for sync-pulse mode is shown in Figure 3-60, which also shows registers mappings to lines of VSA/VBP/VACT/VFP periods.

Figure 3-60 Non-burst Transmission: Sync-pulse Mode

3.8.2.6.3.4.2 Non-Burst with Sync-Event Mode

A non-burst sync-event mode is similar to the pulse-sync mode, but accurate reconstruction of sync pulse widths is not required. Therefore, a single sync event is substituted. The timing diagram is shown in Figure 3-61.

Figure 3-61 Non-burst Transmission: Sync-event Mode

3.8.2.6.3.4.3 Burst Mode

A burst mode allows RGB pixel packets to be time-compressed, leaving more time during a scan line for LP mode to save power or for multiplexing other transmissions onto DSI link. The timing diagram is shown in Figure 3-62.

Figure 3-62 Burst Mode Transmission

3.8.2.6.4 Command Mode Packet Transmission

DSI supports command mode transmission through writing commands to a dedicated command queue. By configuring commands and triggering, the transmission can be executed sequentially.

3.8.2.6.4.1 Command Queue

DSI has a dedicated command queue that is 32-bit in width and up to 128-entry in depth, as shown in Figure 3-63. To simplify the settings for transmitting a packet in the command mode, the command queue is designed to categorize all possible transmission types and commands into four primary instructions and unifies all DSI specification commands into one or several 32-bit-wide instructions. Figure 3-63 also illustrates a 32-bit instruction structure with the instruction format of CONFG byte.

Table 3-52 shows the descriptions of the CONFIG byte to an instruction.

Table 3-52 Config Field Description of Main Instruction					
REG_Name	REG_Value	Function	Description		
	00	Type 0	Used for DSI short packet read/write command		
Turn a [1, 0]	01	Type 1	Used for DSI frame buffer write command (long packet)		
Type[1:0]	10	Type 2	Used for DSI generic long packet write command		
	11	Туре 3	Used for DSI frame buffer read command (short packet)		
DTA	0	Off	Turn enough the DCI light often the DCI common distances its ad		
BTA	1	On	Turn around the DSI link after the DSI command is transmitted		
110	0	Off	Enable HS TX transmission for this packet; otherwise, transmit		
HS	1	On	packet via LP TX.		
CI	0	8-bit	Select command length for frame buffer read/write instruction.		
CL	1	16-bt	Only effective for type 1 and type 3 instructions.		
TE	0	Off	Enable TE request. Will only turn around the DSI link without		
TE	1	On	any packet transmission.		
Resv	-	-	Reserved for further use		
Resv	-	-	Reserved for further use		

Table 3-52 Config Field Description of Main Instruc	tion
---	------

3.8.2.6.4.2 Type-0 Instruction

Type-0 instruction is used to transmit short packets. Table 3-53 lists the formats of type-0 instruction where (Data ID + Data 0 + Data 1) is constructed by a DSI short packet command (without ECC).

Table 3-53	8 Type-0 Instruction	Format
------------	----------------------	--------

Byte 3	Byte 2	Byte 1	Byte 0
Data 1	Data 0	Data ID	CONFG.

To send the "Turn on Peripheral" and "Color Mode On" commands, which are transmitted via LP TX and HS TX respectively, request a slave response after the second command is finished, and translate the descriptions into two 32-bit instructions. See the steps illustrated in Table 3-54.

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Fill command queue entry-0	W	DSI_CMDQ[0]	0 x 0000120C	0 x 200
2	Fill command queue entry-1	W	DSI_CMDQ[1]	0 x 00003200	0 x 204
3	Set command count	W	CMDQ_SIZE	0 x 2	0 x 060[7:0]
4	Start command	W	DSI_START	0 x 1	0 x 000[0]
5	Issue interrupt and receive slave response	R	LPRX_RD_RDY_INT_FLAG	0 x 1	0 x 00C[0]
6	Clear interrupt status	W	LPRX_RD_RDY_INT_FLAG	0 x 1	0 x 00C[0]
7	Read trigger status (Acknowledge)	R	RX_TRIG_0 RX_TRIG_1	0 x 4	0 x 088[3:0]

Table 3-54 Type-0 TX Example

Step	Sequence	R/W	REG_Name	REG_Value	Address
			RX_TRIG_2		
			RX_TRIG_3		
8	Respond read ack to module and go to next commands in queue	w	RACK	0 x 1	0 x 084[0]
9	Issue interrupt and command done	R	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]
10	Clear interrupt status	W	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]

3.8.2.6.4.3 Type-1 Instruction

Type-1 command is used to write data into the frame buffer. As shown in Table 3-55, there are 4 bytes constructing this type of instruction where Mem_start_0 and Mem_start_1 can be generic commands defined by slave vendors or DCS commands. Mem_start_1 is optional, i.e. the memory start/continue command can be single-byte as DCS defines. It depends on the CL bit of the CONFG. The byte indicates whether the DSI controller sends Mem_start_1 or not.

Since the length of frame butter to be updated is not constant, this type of instruction may send several long packets to the slave. The payload data and length of each packet (excluding mem_start_0 and mem_start_1) are prepared by the RDMA controller that couples the output of image data path or layer overlay result to the DSI controller. For the first packet, mem_start_0 and mem_start_1 (if CL = 1) are used as the parameters to inform the slave that the host is starting to write the frame buffer. For the remaining packets, the register value DSI_RWMEM_CONTI[15:0] will be used as the parameters to inform the slave side to write these data following the last pixel of the previous packet. For more flexibility, Mem_start_0, Mem_start_1, DSI_RWMEM_CONTI[15:0] and CL are all programmable.

You need to set up two registers to define the packet length and packet count for a frame-based type-1 transmission. Frame width in bytes should be set to PS_WC, and frame height in lines should be set to DSI_VACT_NL, respectively. These two registers are used in both video and command mode frame data transmission.

	<i>``</i>		
Byte 3	Byte 2	Byte 1	Byte 0
Mem start 1 (optional)	Mem start 0	Data ID	CONFG.

Table 3-55 Type-1 Instruction Format

Refer to the example in Table 3-56 to write the frame buffer via DCS commands in the HS TX mode.

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Fill command queue entry-0	W	DSI_CMDQ[0]	0 x 002C3909	0 x 200
2	Set command count	W	CMDQ_SIZE	0 x 1	0 x 060[7:0]
3	Set memory continue command	W	DSI_RWMEM_CONTI	0 x 3C	0 x 090[15:0]
4	Start command	W	DSI_START	0 x 1	0 x 000[0]
5	Issue interrupt and command done	R	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]
6	Clear interrupt status	W	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]

Table 3-56 Type-1 TX Example

3.8.2.6.4.4 Type-2 Instruction

Type-2 instruction is used to send a long packet. As shown in Table 3-57, this type of main instruction requires several subinstructions that do not have CONFIG. To send a type-2 command, write a CONFIG with TYPE = 2 and packet header information (Data ID + 2-byte word count) to entry 0, and write a series of data bytes in size of word count to the following entries, excluding ECC and checksum. The bytes in the following entries are treated as long packet data instead of the next instruction until the word count size is reached. The command queue count should be set as the number of multiple entries used.

The type-2 command is sent in LPTX mode due to memory latency in reading sub-instruction data. Besides, the type-2 command should be sent individually without the next instruction followed. For the 32-entry command queue, the maximum word count for a long packet is 124 bytes.

Byte 3	Byte 2	Byte 1	Byte 0
WC 1	WC 0	Data ID	CONFG.
Data 3	Data 2	Data 1	Data 0
		Data WC-1	Data WC-2

Table 3-57 Type-2 Instruction Format

See Table 3-58 for the example of sending three parameters (0 x 33, 0 x 22, 0 x 11) by a generic long packet command with 3-byte word count.

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Fill command queue entry-0 (data ID and word count)	W	DSI_CMDQ[0]	0 x 00032902	0 x 200
2	Fill command queue entry-1 (parameters)	W	DSI_CMDQ[1]	0 x 00112233	0 x 204
3	Set command count	W	CMDQ_SIZE	0 x 2	0 x 060[7:0]
4	Start command	W	DSI_START	0 x 1	0 x 000[0]
5	Issue interrupt and command done	R	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]
6	Clear interrupt status	W	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]

Table 3-58 Type-2 TX Example

Note that the RPT bit of CONFIG.is designed for this type of instruction. It is useful for the NULL packet or blanking packet. For example, if a null packet is to be sent, only the main instruction (entry-0 of command queue) will be needed, and the following payload data will be sent as "0".

3.8.2.6.4.5 Type-3 Instruction

Type-3 instruction is used for reading frame buffer. As shown in Table 3-59, the format is the same as that of type-1. When this instruction is executed, the host first sends a short packet with memory start parameter given in byte 2 and byte 3 and automatically issues the next packet by memory continuous parameters programmed in DSI_RWMEM_CONTI[15:0]. The number of total packets required to be sent depends on the DSI_FRM_BC and "maximum return packet size". For example, to read 1,024 bytes from the frame buffer in the slave, and the "maximum return packet size" is set to "4", there will be

another 255 short packets with memory continuous parameters to be sent successively after the first short packet described in main instruction is sent.

Byte 3	Byte 2	Byte 1	Byte 0		
Men start 1 (optional)	Mem start 0	Data ID	CONFG.		

Table 3-59 Type-3 Instruction Format

See Table 3-60 for an example of using the type-3 instruction to perform the frame buffer read.

Step	Sequence	R/W	REG_Name	REG_Value	Address	
1	Fill command queue entry-0	W	DSI_CMDQ[0]	0 x 002E0603	0 x 200	
2	Set command count	W	CMDQ_SIZE	0 x 1	0 x 060[7:0]	
3	Set memory read continue command	W	DSI_RWMEM_CONTI	0 x 3E	0 x 090[15:0]	
4	Start command	W	DSI_START	0 x 1	0 x 000[0]	
5	Issue interrupt and receive slave response	R	LPRX_RD_RDY_INT_FLAG	0 x 1	0 x 00C[0]	
6	Read receive data bytes	R	BYTEO BYTE1 BYTE2 BYTE3	-	0 x 074	
7	Clear interrupt status	W	LPRX_RD_RDY_INT_FLAG	0 x 1	0 x 00C[0]	
8	Respond with read acknowledgement to module and go to next commands in queue	W	RACK	0 x 1	0 x 084[0]	
9	Issue interrupt and command done	R	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]	
10	Clear interrupt status	W	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]	

Table 3-60 Type-3 TX Example

3.8.2.6.5 Tearing Effect Detection

3.8.2.6.5.1 Peripheral TE

DSI has the ability to receive peripheral Tearing Effect (TE) signals via the BTA process. The TE signal is the LPTX transmitted signal from the panel. Before starting to receive TE signals from the peripheral, make sure a DCS command of "set_tear_on" is sent and register configuration of TE is enabled in the peripheral to avoid TE hanged issue. Here is an example in Table 3-61 to show how to trigger TE commands by command queue.

	Table 3-01 Example of Peripheral TE Signaling Detection						
Step	Sequence	R/W	REG_Name	REG_Value	Address		
1	Fill command queue: DCS "set_tear_on"	W	DSI_CMDQ[0]	0 x 00351500	0 x 200		
2	Fill command queue: Get TE	W	DSI_CMDQ[1]	0 x 00000020	0 x 204		
3	Fill command queue: Type-1 command	W	DSI_CMDQ[2]	0 x 002C3909	0 x 208		
4	Set command count	W	CMDQ_SIZE	0 x 3	0 x 060[7:0]		
5	Set memory write continue command	W	DSI_RWMEM_CONTI	0 x 3C	0 x 090[15:0]		

Table 3-61 Example of Peripheral TE Signaling Detection

© 2023-2024 MediaTek Inc. All rights reserved.

Page 133 of 472

Step	Sequence	R/W	REG_Name	REG_Value	Address
6	Start command	W	DSI_START	0 x 1	0 x 000[0]
7	Issue interrupt and receive TE	R	TE_RDY_INT_FLAG	0 x 1	0 x 00C[2]
8	Read trigger status (TE)	R	RX_TRIG_0, RX_TRIG_1, RX_TRIG_2, RX_TRIG_3	0 x 2	0 x 088[3:0]
9	Clear interrupt status	W	TE_RDY_INT_FLAG	0 x 1	0 x 00C[2]
10	Response read ack to module and go to next commands in queue	w	RACK	0 x 1	0 x 084[0]
11	Issue interrupt and command done	R	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]
12	Clear interrupt status	W	CMD_DONE_INT_FLAG	0 x 1	0 x 00C[1]

3.8.2.6.5.2 External TE

In certain cases, an external TE pin may be used instead of TE signals for some reasons. DSI supports this mechanism to issue external TE interrupt signals. Refer to the sequences shown in Table 3-62 for detailed control information.

Table 3-62 Example of External TE Pin Detection

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Enable external TE interrupt	W	TE_RDY_INT_EN	0 x 1	0 x 008[2]
2	Select external TE polarity (active-high)	W	EXT_TE_EDGE_SEL	0 x 0	0 x 018[10]
3	Enable external TE	W	EXT_TE_EN	0 x 1	0 x 018[9]
4	Issue interrupt and receive external TE	R	TE_RDY_INT_FLAG	0 x 1	0 x 00C[2]
5	Clear interrupt status	W	TE_RDY_INT_FLAG	0 x 1	0 x 00C[2]

3.8.2.6.6 Switch of Video Mode and Command Mode

The switch between video mode and command mode is controlled by $MODE_CON$ (DSI base address + 0 x 014[1:0]). And this switch is allowed only when DSI is not busy. Switching the mode while DSI is still busy causes DSI to hang up. There are three ways to know if DSI is non-busy, which are shown in Table 3-63, Table 3-64, and Table 3-65.

	-				
Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Stop DSI	W	DSI_START	0 x 0	0 x 000[0]
2	Wait for DSI non-busy	R	DSI_BUSY	0 x 0	0 x 00C[31]
3	Switch mode	W	MODE_CON	-	0 x 014[1:0]
4	Mode switch done				

Table 3-63 DSI Non-busy Detection by DSI_BUSY Register

Table 3-64 DSI Non-busy Detection by DSI_DONE Event

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Stop DSI		DSI_START	0 x 0	0 x 000[0]
2	Wait for DSI_DONE event				
3	Switch mode	W	MODE_CON	-	0 x 014[1:0]
4	Mode switch done				

Table 3-65 DSI Non-busy Detection by VM_DONE/CM_DONE Interrupt

Step	Sequence	R/W	REG_Name	REG_Value	Address
1	Enable VM_DONE interrupt (video mode)/CM_DONE interrupt (command mode)	W	VM_DONE_INT_EN/ CM_DONE_INT_EN	0 x 1	0 x 008[3]/[1]
2	Stop DSI	W	DSI_START	0 x 0	0 x 000[0]
3	Wait for VM_DONE (video mode)/CM_DONE IRQ (command mode)				
4	Switch mode	W	MODE_CON	-	0 x 014[1:0]
5	Mode switch done				

3.8.2.6.7 Lane/Trio Swap Function

3.8.2.6.7.1 D-PHY Lane Swap

The D-PHY lane swap function can swap the source of all lanes. The source of each lane can be chosen by MIPI_TX_*_SEL, which is shown in Table 3-66. The schematic diagram of lane swap mux is shown in Figure 3-64.

Table 3-66 D-PHY Lane Swap Control Register

Table 5 66 D TTT Lane Swap control negister						
REG_Name	Description	Default REG_Value	Address			
MIPI_TX_PHY2_SEL	Lane2 LP data P selection	4'd0	MIPI_TX_Config base address + 0 x 040[7:4]			
MIPI_TX_CPHY0BC_SEL	Lane2 LP data N selection	4'd1	MIPI_TX_Config base address + 0 x 040[11:8]			
MIPI_TX_PHY0_SEL	Lane0 LP data P selection	4'd2	MIPI_TX_Config base address + 0 x 040[15:12]			
MIPI_TX_CPHY1AB_SEL	Lane0 LP data N selection	4'd3	MIPI_TX_Config base address + 0 x 040[19:16]			
MIPI_TX_PHYC_SEL	Lanec LP data P selection	4'd4	MIPI_TX_Config base address + 0 x 040[23:20]			
MIPI_TX_CPHY1CA_SEL	LaneC LP data N selection	4'd5	MIPI_TX_Config base address + 0 x 040[27:24]			
MIPI_TX_PHY1_SEL	Lane1 LP data P selection	4'd6	MIPI_TX_Config base address + 0 x 040[31:28]			
MIPI_TX_CPHY2BC_SEL	Lane1 LP data N selection	4'd7	MIPI_TX_Config base address + 0 x 044[3:0]			
MIPI_TX_PHY3_SEL	Lane3 LP data P selection	4'd8	MIPI_TX_Config base address + 0 x 044[7:4]			
MIPI_TX_CPHYXXX_SEL	Lane3 LP data N selection	4'd9	MIPI_TX_Config base address + 0 x 044[11:8]			
MIPI_TX_PHY2_HSDATA_ SEL	Lane2 HS data selection	4'd0	MIPI_TX_Config base address + 0 x 048[3:0]			
MIPI_TX_PHY0_HSDATA _SEL	Lane0 HS data selection	4'd2	MIPI_TX_Config base address + 0 x 048[11:8]			
MIPI_TX_PHYC_HSDATA _SEL	LaneC HS data selection	4'd4	MIPI_TX_Config base address + 0 x 048[19:16]			
MIPI_TX_PHY1_HSDATA _SEL	Lane1 HS data selection	4'd6	MIPI_TX_Config base address + 0 x 048[27:24]			

Figure 3-64 D-PHY Lane Swap Mux

3.8.2.6.7.2 C-PHY Trio Swap

The C-PHY trio swap function can swap the source of all trios. The source of each trio can be chosen by MIPI_TX_*_SEL, which is shown in Table 3-67. The schematic diagram of trio swap mux is shown in Figure 3-65.

		<u> </u>	5
REG_Name	Description	Default REG_Value	Address
MIPI_TX_PHY2_SEL	TOA LP data selection	4'd0	MIPI_TX_Config base address + 0 x 040[7:4]
MIPI_TX_CPHYOBC_SEL	TOB LP data selection	4'd1	MIPI_TX_Config base address + 0 x 040[11:8]
MIPI_TX_PHY0_SEL	TOC LP data selection	4'd2	MIPI_TX_Config base address + 0 x 040[15:12]
MIPI_TX_CPHY1AB_SEL	T1A LP data selection	4'd3	MIPI_TX_Config base address + 0 x 040[19:16]
MIPI_TX_PHYC_SEL	T1B LP data selection	4'd4	MIPI_TX_Config base address + 0 x 040[23:20]
MIPI_TX_CPHY1CA_SEL	T1C LP data selection	4'd5	MIPI_TX_Config base address + 0 x 040[27:24]
MIPI_TX_PHY1_SEL	T2A LP data selection	4'd6	MIPI_TX_Config base address + 0 x 040[31:28]
MIPI_TX_CPHY2BC_SEL	T2B LP data selection	4'd7	MIPI_TX_Config base address + 0 x 044[3:0]
MIPI_TX_PHY3_SEL	T2C LP data selection	4'd8	MIPI_TX_Config base address + 0 x 044[7:4]
MIPI_TX_PHY2_HSDATA_SEL	TOA HS data selection	4'd0	MIPI_TX_Config base address + 0 x 048[3:0]
MIPI_TX_CPHYOBC_HSDATA _SEL	TOB HS data selection	4'd1	MIPI_TX_Config base address + 0 x 048[7:4]
MIPI_TX_PHY0_HSDATA _SEL	TOC HS data selection	4'd2	MIPI_TX_Config base address + 0 x 048[11:8]
MIPI_TX_CPHY1AB_HSDATA _SEL	T1A HS data selection	4'd3	MIPI_TX_Config base address + 0 x 048[15:12]
MIPI_TX_PHYC_HSDATA _SEL	T1B HS data selection	4'd4	MIPI_TX_Config base address + 0 x 048[19:16]
MIPI_TX_CPHY1CA_HSDATA _SEL	T1C HS data selection	4'd5	MIPI_TX_Config base address + 0 x 048[23:20]
MIPI_TX_PHY1_HSDATA _SEL	T2A HS data selection	4'd6	MIPI_TX_Config base address + 0 x 048[27:24]
MIPI_TX_CPHY2BC_HSDATA _SEL	T2B HS data selection	4'd7	MIPI_TX_Config base address + 0 x 048[31:28]
MIPI_TX_PHY3_HSDATA _SEL	T2C HS data selection	4'd8	MIPI_TX_Config base address + 0 x 04C[3:0]

Table 3-67 C-PHY Trio Swap Control Register

© 2023-2024 MediaTek Inc. All rights reserved.

REG_Name	Description	Default REG_Value	Address
MIPI_TX_CPHY0_HS_SEL	TO HS ctrl signal selection	2'd0	MIPI_TX_Config base address + 0 x 044[25:24]
MIPI_TX_CPHY1_HS_SEL	TO HS ctrl signal selection	2'd1	MIPI_TX_Config base address + 0 x 044[27:26]
MIPI_TX_CPHY2_HS_SEL	T0 HS ctrl signal selection	2'd2	MIPI_TX_Config base address + 0 x 044[29:28]

3.8.2.7 DSI Signal Descriptions

Table 3-68 presents DSI signal descriptions.

Signal Name	Signal Name Type Description		scription	Ball Location
DSI1		D-PHY Mode	C-PHY Mode	
DSI1_CKN_T1C	AIO	DSI1 clock lane (negative)	DSI1 Trio1 C	AK6
DSI1_CKP_T1B	AIO	DSI1 clock lane (positive)	DSI1 Trio1 B	AK7
DSI1_DON_T1A	AIO	DSI1 data lane 0 (negative)	DSI1 Trio1 A	AK5
DSI1_D0P_T0C	AIO	DSI1 data lane 0 (positive)	DSI1 Trio0 C	AL5
DSI1_D1N_T2B	AIO	DSI1 data lane 1 (negative)	DSI1 Trio2 B	AL6
DSI1_D1P_T2A	AIO	DSI1 data lane 1 (positive)	DSI1 Trio2 A	AL7
DSI1_D2N_T0B	AIO	DSI1 data lane 2 (negative)	DSI1 Trio0 B	AL4
DSI1_D2P_T0A	AIO	DSI1 data lane 2 (positive)	DSI1 Trio0 B	AL3
DSI1_D3N	AIO	DSI1 data lane 3 (negative)	-	AK8
DSI1_D3P_T2C	AIO	DSI1 data lane 3 (positive)	DSI1 Trio2 C	AL8
DSI1_TE	DI	DSI1 tearing effect control	DSI1 tearing effect control	Y5, AA7
DSI0		D-PHY Mode	C-PHY Mode	
DSI0_CKN_T1C	AIO	DSIO clock lane (negative)	DSI0 Trio1 C	AH7
DSI0_CKP_T1B	AIO	DSIO clock lane (positive)	DSI0 Trio1 B	AH6
DSI0_DON_T1A	AIO	DSIO data lane 0 (negative)	DSI0 Trio1 A	AH5
DSI0_D0P_T0C	AIO	DSI0 data lane 0 (positive)	DSI0 Trio0 C	AG5
DSI0_D1N_T2B	AIO	DSIO data lane 1 (negative)	DSI0 Trio2 B	AH3
DSI0_D1P_T2A	AIO	DSIO data lane 1 (positive)	DSI0 Trio2 A	AH4

Table 3-68 DSI signal descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description		Ball Location
DSI0_D2N_T0B	AIO	DSIO data lane 2 (negative)	DSI0 Trio0 B	AG6
DSI0_D2P_T0A	AIO	DSI0 data lane 2 (positive) DSI0 Trio0 A		AG7
DSI0_D3N	AIO	DSIO data lane 3 (negative)	-	AH2
DSI0_D3P_T2C	AIO	DSIO data lane 3 (positive)	DSI0 Trio2 C	AJ3
DSI_TE	DI	DSI0 tearing effect control	DSI0 tearing effect control	AA7, Y5

3.8.3 Display Digital Parallel Interface (DPI)

3.8.3.1 **Overview**

The device includes two DPI controllers, DPI0 and DPI1, which output digital video data and timing signals. DPI0 is used to directly interface with an external display panel, while DPI1 provides data and timings to the HDMITX module.

3.8.3.2 Features

Each DPI controller supports the following key features:

- Flexible output data bus width and formats:
 - DPIO up to 16-bit bus: RGB565/YUV422 8-bit
 - DPI1 up to 30-bit bus: RGB565/RGB 8-bit, 10bit/YUV444 8-bit, 10-bit/YUV422 8-bit, 10-bit, 12-bit
- Resolution up to 1920 × 1080 @ 60fps (for DPI0 only)
- Fixed-coefficient color space conversion
- Embedded synchronization timings for BT.656-like output format
- Dual edge output format
- YUV444 to YUV422 chroma down-sampling
- Internal pattern generator

3.8.3.3 DPI Signal Descriptions

Table 3-69 presents DPI signal descriptions.

Signal Name	Туре	Description	Ball Location	
DPI_CK	DO	DPI pixel clock	AB1	
DPI_D0	DO	DPI data 0	AB9	
DPI_D1	DO	DPI data 1	AC9	
DPI_D10	DO	DPI data 10	AC5	
DPI_D11	DO	DPI data 11	AA5	
DPI_D12	DO	DPI data 12	AA6	
DPI_D13	DO	DPI data 13	AC6	

Table 3-69 DPI Signal Descriptions

Signal Name	Туре	Description	Ball Location
DPI_D14	DO	DPI data 14	AC7
DPI_D15	DO	DPI data 15	AB4
DPI_D2	DO	DPI data 2	AB8
DPI_D3	DO	DPI data 3	AC4
DPI_D4	DO	DPI data 4	AB3
DPI_D5	DO	DPI data 5	AA8
DPI_D6	DO	DPI data 6	AC8
DPI_D7	DO	DPI data 7	AB7
DPI_D8	DO	DPI data 8	AB6
DPI_D9	DO	DPI data 9	AB5
DPI_DE	DO	DPI data enable	AB2
DPI_HSYNC	DO	DPI horizontal synchronization	AD11
DPI_VSYNC	DO	DPI vertical synchronization	AD10

3.8.3.4 DPI Timing Characteristics

Table 3-70 and Figure 3-66 present timing characteristics for DPI in the device.

Table 3-70 DPI Timing Characteristics

No.	Parameter			Max	Unit
DPI01	tc	Cycle time	6.73 ⁽¹⁾		ns
DPI02	D	Duty cycle, DPI_CK	45	55	%
DPI03	trise	Rise time		1.374	ns
DPI04	tfall	Fall time		1.374	ns
DPI05	t _d	Delay time, other signals to DPI_CK	1.683		ns

(1) For maximum operating clock frequency, refer to Table 6-1.

Page 140 of 472

Figure 3-66 DPI Timing Diagram

3.8.3.5 DPI Block Diagram

- Timing generator (tgen): Generate timing signals like vsync, hsync, and de.
- Pattern generator (pat): Generate an internal pattern. If a pattern is enabled, the input data is replaced by the internal pattern data.
- FIFO controller (afifo): Turn 1T1P or 1T2P to 1T1P and turn mm_clk to dpi_pixel_clk.
- Matrix: Perform color space conversion and support 19 internal matrices as well as programmable matrix.
- Chroma low pass filter (clpf) and YUV422: Down sample YUV444 to YUV422.
- Embedded sync (embsync): Embed sync signals to data channel and support BT656-like output format.
- Outstage: Support channel swap and DDR, output video data and timing.

Figure 3-67 DPI Block Diagram

3.8.3.6 DPI Programming Guide

The following figure shows the DPI programming flow diagram. Firstly, configure each timing register based on the target frame timing. Then, reset and enable DPI.

Figure 3-68 Programming Flow Diagram

3.8.4 Embedded DisplayPort Interface (EDPTX)

3.8.4.1 Overview

The EDPTX provides the electrical transport for video and auxiliary data between the device and an external display module. The communication link is handled through the eDP Auxiliary Channel (EDPAUX).

3.8.4.2 Features

The EDPTX supports the following key features:

- Compliance with eDP v1.4 standard
- Single link output port with 2 × main lanes
- Up to 5.4 Gbps per lane (HBR2)
- Hot-Plug Detect (HPD) line
- Auxiliary channel lane:
 - Manchester-II coding
 - Clock extracted from the data stream
 - 1 Mbps bit rate
- Input data formats: RGB 8-bit/10-bit, YUV444 8-bit/10-bit, YUV422 8-bit/10-bit
- RGB444 8-bit/10-bit color format
- 8-bit to 10-bit encoder
- Alternative Scrambler Seed Reset (ASSR) function
- Inter-lane skew function
- Up to 2560x1600 @ 60 Hz resolution (10-bit, HBR2 without DSC)

3.8.4.3 EDPTX Signal Descriptions

Table 3-71 presents EDPTX signal descriptions.

Table 3-71 EDPTX Signal Descriptions

Signal Name	Туре	Description	Ball Location
EDP_TX_HPD	DI	EDPTX hot plug detect	AC32, AA35, F4, AA7, Y5, K30
EDP_LN0_TXN	AIO	EDPTX lane 0 (negative)	AG29
EDP_LN0_TXP	AIO	EDPTX lane 0 (positive)	AG30
EDP_LN1_TXN	AIO	EDPTX lane 1 (negative)	AF31
EDP_LN1_TXP	AIO	EDPTX lane 1 (positive)	AF32
EDPAUXN	AIO	EDPTX auxiliary channel (negative)	AF37
EDPAUXP	AIO	EDPTX auxiliary channel (positive)	AF36

3.8.4.4 Block Diagram

The EDP_TX_MAC block is the main design. It supports HBR2 solution. Source video signals can come from GPU. The AUX can be controlled by the software.

Figure 3-69 EDP TX Block Diagram with Other IPs

3.8.4.4.1 EDPTX Encoder

The pixel clock and link clock serve as the main clocks in DP. Hence, the design is related to the speed limitation. The Transfer Unit (TU) calculator generates the appropriate TU value to avoid TBC FIFO from being empty or full. The lane arbiter splits video data into 4/2/1 DP lanes. The video data packer packages video data into DP format. Meanwhile, the video MN GEN circuit calculates the M value, which is inserted to Vertical Blanking ID (VBID) and Main Stream Attribute (MSA) packets. VBID includes the vblank flag, field flag, interlace flag (I mode), video mute flag, audio mute flag, HDCP sync detect flag, and DSC flag, while MSA includes video timing information (HV_total, HV_width, etc.). Finally, the symbol mixer contains VBID, MSA, and video data.

Figure 3-70 EDP TX Encoder Block Diagram

3.8.4.4.2 DPTX Transmitter

- 1. Main link data path is processed in 4P, clk_ls = link_rate/40.
- 2. TX Training Control generates TPS1/TPS2/TPS3/TPS4 patterns.
- 3. Pre-Encode MISC includes lane mux, PN swap, bit reverse and data swap.
- 4. Post-Encode MISC includes lane mux, PN swap, bit reverse and data swap.
- 5. Program/PRBS Pattern gen can generate 8/11/80-bit and PRBS test patterns.

Figure 3-71 DP TX Transmitter Block Diagram

3.8.4.4.3 DPTX AUX

The software controls PHY TX to transmit AUX sequence and receive RX site reply data by PHY RX.

- 1. PHY TX includes Manchester encoder.
- 2. PHY RX includes Manchester decoder.

3.8.4.5 General SW MAC Setting (APN)

3.8.4.5.1 MSA

dptx_reg_3030_dp_enc_4p[9:0] = 10'h3ff dptx_reg_3010_dp_enc_4p[15:0]: htotal dptx_reg_3014_dp_enc_4p[15:0]: vtotal dptx_reg_3018_dp_enc_4p[15:0]: vtotal dptx_reg_301C_dp_enc_4p[15:0]: vstart dptx_reg_3020_dp_enc_4p[15:0]: hwidth dptx_reg_3024_dp_enc_4p[15:0]: vheigth dptx_reg_3028_dp_enc_4p[14:0]: hsw dptx_reg_3028_dp_enc_4p[15]: hsp dptx_reg_302C_dp_enc_4p[14:0]: vsw

3.8.4.5.2 Lane Number

The lane number control register exists in the encoder and transmitter.

4-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b10 dptx_reg_34A4_dp_trans_4p[3:2] = 2'b10 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b10

2-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b01 dptx_reg_34A4_dp_trans_4p[3:2] = 2'b01 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b01

1-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b00

dptx_reg_34A4_dp_trans_4p[3:2] = 2'b00 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b00

3.8.4.5.3 Training Pattern (1/2/3/4)

Normal mode : dptx_reg_3400_dp_trans_4p[15:12] = 4'b0000 Training Pattern 1: dptx_reg_3400_dp_trans_4p[15:12] = 4'b0001 Training Pattern 2: dptx_reg_3400_dp_trans_4p[15:12] = 4'b0010 Training Pattern 3: dptx_reg_3400_dp_trans_4p[15:12] = 4'b0100 Training Pattern 4: dptx_reg_3400_dp_trans_4p[15:12] = 4'b1000

3.8.4.5.4 CTS Pattern

CP2520 pattern 1: dptx_reg_3478_dp_trans_4p[0] CP2520 pattern 2: dptx_reg_3478_dp_trans_4p[1] PRBS pattern: dptx_reg_3444_dp_trans_4p[3]

3.8.4.5.5 Alternate Scrambler Seed Reset (ASSR)

Scrambler Seed Reset = hfffe dptx_reg_3404_dp_trans_4p[1]

3.8.4.5.6 Enhanced Frame Mode

dptx_reg_3000_dp_enc_4p[4]

3.8.4.5.7 Pre-Lane Mux

dptx_reg_3404_dp_trans_4p[1:0]: Lane0 mux dptx_reg_3404_dp_trans_4p[3:2]: Lane1 mux dptx_reg_3404_dp_trans_4p[5:4]: Lane2 mux dptx_reg_3404_dp_trans_4p[7:6]: Lane3 mux

3.8.4.5.8 Post-Lane Mux

dptx_reg_3408_dp_trans_4p[9:8]: Lane0 mux dptx_reg_3408_dp_trans_4p[11:10]: Lane1 mux dptx_reg_3408_dp_trans_4p[13:12]: Lane2 mux dptx_reg_3408_dp_trans_4p[15:14]: Lane3 mux

3.8.4.5.9 Post-PN Swap

dptx_reg_3406_dp_trans_4p[1]: PN swap

3.8.4.5.10 Initial Setting

RGB 30BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h02 RGB 24BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h03 RGB 18BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h04 MISC0: dptx_reg_3034_dp_enc_4p[7:0], value according to DP specification. MISC1: dptx_reg_3034_dp_enc_4p[15:8]

3.8.4.5.11 MSA Delay Line Setting

dptx_reg_32F8_dp_enc_4p_2[8]: MSA line delay function enable dptx_reg_32F8_dp_enc_4p_2[7:0]: Line delay count

3.8.4.5.12 TU Calculation

 $TU \ num = 64 \times \frac{pixel_bpp \times pixel_rate}{lane_num \times link_rate \times 8} = 64 \times \frac{pixe_bpp \times M \ value}{lane_num \times N \ value \times 8}$ dptx_reg_33C0_dp_enc_4p_2[6:0]: Read hardware TU number

3.8.4.5.13 AUX PHY Initial Setting

dptx_reg_367C_dp_tx_aux[12] = 1'b1
dptx_reg_3670_dp_tx_aux[10] = 1'b0
dptx_reg_3658_dp_tx_aux[10] = 1'b0

3.8.4.5.14 AUX 400us Timeout Threshold

dptx_reg_360C_dp_tx_aux[12:0]: The unit is xtal period.

3.8.4.5.15 DPCD Write

dptx_reg_3644_dp_tx_aux[3:0]: Request command {dptx_reg_364C_dp_tx_aux, dptx_reg_3648_dp_tx_aux[15:0]}: Request address dptx_reg_3650_dp_tx_aux[15:12]: Request length dptx_reg_3634_dp_tx_aux[7:0]: Request write data dptx_reg_3630_dp_tx_aux[3]: Request ready

Repeat based on data_num

Figure 3-73 DPCD Writing Flow

dptx_reg_3640_dp_tx_aux[6]: Sink reply complete IRQ dptx_reg_3640_dp_tx_aux[0]: AUX timeout IRQ dptx_reg_3624_dp_tx_aux[3:0]: Sink reply command

3.8.4.5.16 DPCD Read

These control registers are the same as DPCD write registers.

dptx_reg_3620_dp_tx_aux[8]: The software reads data pulse.

Repeat based on data_num

Figure 3-74 DPCD Reading Flow

3.8.4.5.17 I2C Write

The flow is the same as that of DPCD write.

3.8.4.5.18 I2C Write No Length

This flow is different. Since the AUX sequence has no length, data_num and wdata can be ignored. Note that no_length has to be cleared after the communication is completed.

dptx_reg_362C_dp_tx_aux[0]: No length setting

Figure 3-75 I2C Writing Flow

© 2023-2024 MediaTek Inc. All rights reserved.

Page 147 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

3.8.4.5.19 I2C Read

The flow is the same as that of DPCD read.

3.8.4.5.20 I2C Read No Length

The flow is the same as DPCD write no length, but it is a write command.

3.8.4.5.21 AUX PHY FIFO Status

dptx_reg_368C_dp_tx_aux[0]: RX FIFO done flag dptx_reg_368C_dp_tx_aux[1]: Clear RX FIFO done flag dptx_reg_368C_dp_tx_aux[2]: TX FIFO done flag dptx_reg_368C_dp_tx_aux[3]: Clear TX FIFO done flag

When toggling dptx_reg_3620_dp_tx_aux[8], the software could poll dptx_reg_368C_dp_tx_aux[0]. If this bit is 1'b0, it will read the next data. Before reading the next data, clear the dptx_reg_368C_dp_tx_aux[0] status by dptx_reg_368C_dp_tx_aux[1].

When toggling dptx_reg_3634_dp_tx_aux, the software could poll dptx_reg_368C_dp_tx_aux[2]. If this bit is 1'b0, it will write the next data to this FIFO. Before writing the next data to TX FIFO, clear the dptx_reg_368C_dp_tx_aux[2] status by dptx_reg_368C_dp_tx_aux[3].

3.8.4.5.22 AUX TX Request Pre-charge + Preamble Number

dptx_reg_3630_dp_tx_aux[15:8]: pre-charge + preamble number

3.8.5 DisplayPort Interface (DPTX)

3.8.5.1 Overview

The DPTX provides digital video and auxiliary data transfer between the device and an external display module. The communication link is handled through the DP Auxiliary Channel (DPAUX).

3.8.5.2 Features

The DPTX supports the following key features:

- Compliance with DP v1.4 standard
- Single link output port with 4 × main lanes, configured as follows:
 - 4 × lanes with up to 5.4 Gbps per lane (HBR2)
- Hot-Plug Detect (HPD) line
- Auxiliary channel lane:
 - Manchester-II coding
 - Clock extracted from the data stream

© 2023-2024 MediaTek Inc. All rights reserved.

- 1 Mbps bit rate
- Input data formats: RGB 8-bit/10-bit, YUV444 8-bit/10-bit, YUV422 8-bit/10-bit
- Output data format: RGB444 8-bit/10-bit
- 8-bit to 10-bit encoder
- Alternative Scrambler Seed Reset (ASSR) function
- Inter-lane skew function
- Up to 4K2K @ 60 Hz resolution (10-bit, HBR2 without DSC)

3.8.5.3 DPTX Signal Descriptions

Table 3-72 presents DPTX signal descriptions.

Table 3-72 DPTX Signal Descriptions

Signal Name	Туре	Description	Ball Location
DP_LN0_TXN	AIO	DPTX lane 0 (negative)	AH35
DP_LN0_TXP	AIO	DPTX lane 0 (positive)	AG35
DP_LN1_TXN	AIO	DPTX lane 1 (negative)	AH31
DP_LN1_TXP	AIO	DPTX lane 1 (positive)	AH32
DP_LN2_TXN	AIO	DPTX lane 2 (negative)	AJ33
DP_LN2_TXP	AIO	DPTX lane 2 (positive)	AJ34
DP_LN3_TXN	AIO	DPTX lane 3 (negative)	AK31
DP_LN3_TXP	AIO	DPTX lane 3 (positive)	AK32
DP_TX_HPD	DI	DPTX hot plug detect	AB33, J31, Y9, AA11, E5
DPAUXN	AIO	DPTX auxiliary channel (negative)	AJ37
DPAUXP	AIO	DPTX auxiliary channel (positive)	AJ36

3.8.5.4 Block Diagram

The DP_TX_MAC block is the main design. It supports HBR2 solution. Source video signals can come from GPU. The AUX can be controlled by the software.

Figure 3-76 DP TX Block Diagram with Other IPs

3.8.5.4.1 DPTX Encoder

The pixel clock and link clock serve as the main clocks in DP. Hence, the design is related to the speed limitation. The Transfer Unit (TU) calculator generates the appropriate TU value to avoid TBC FIFO from being empty or full. The lane arbiter splits video data into 4/2/1 DP lanes. The video data packer packages video data into DP format. Meanwhile, the video MN GEN circuit calculates the M value, which is inserted to Vertical Blanking ID (VBID) and Main Stream Attribute (MSA) packets. VBID includes the vblank flag, field flag, interlace flag (I mode), video mute flag, audio mute flag, HDCP sync detect flag, and DSC flag, while MSA includes video timing information (HV_total, HV_width, etc.). Finally, the symbol mixer contains VBID, MSA and video data.

Figure 3-77 DP TX Encoder Block Diagram

3.8.5.4.2 DPTX Transmitter

- 1. Main link data path is processed in 4P, clk_ls = link_rate/40.
- 2. TX Training Control generates TPS1/TPS2/TPS3/TPS4 patterns.
- 3. Pre-Encode MISC includes lane mux, PN swap, bit reverse and data swap.
- 4. Post-Encode MISC includes lane mux, PN swap, bit reverse and data swap.
- 5. Program/PRBS Pattern gen can generate 8/11/80-bit and PRBS test patterns.

Figure 3-78 DP TX Transmitter Block Diagram

3.8.5.4.3 DP TX AUX

The software controls PHY TX to transmit AUX sequence and receive RX site reply data by PHY RX.

- 1. PHY TX includes Manchester encoder.
- 2. PHY RX includes Manchester decoder.

© 2023-2024 MediaTek Inc. All rights reserved.

Page 151 of 472

3.8.5.5 General SW MAC Setting (APN)

3.8.5.5.1 MSA

dptx_reg_3030_dp_enc_4p[9:0] = 10'h3ff dptx_reg_3010_dp_enc_4p[15:0]: htotal dptx_reg_3014_dp_enc_4p[15:0]: vtotal dptx_reg_3018_dp_enc_4p[15:0]: hstart dptx_reg_301C_dp_enc_4p[15:0]: vstart dptx_reg_3020_dp_enc_4p[15:0]: hwidth dptx_reg_3024_dp_enc_4p[15:0]: vheigth dptx_reg_3028_dp_enc_4p[14:0]: hsw dptx_reg_3028_dp_enc_4p[15]: hsp dptx_reg_302C_dp_enc_4p[14:0]: vsw dptx_reg_302C_dp_enc_4p[15]: vsp

3.8.5.5.2 Lane Number

The lane number control register exists in the encoder and transmitter.

4-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b10 dptx_reg_34A4_dp_trans_4p[3:2] = 2'b10 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b10

2-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b01 dptx_reg_34A4_dp_trans_4p[3:2] = 2'b01 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b01

1-lane: dptx_reg_3000_dp_enc_4p[1:0] = 2'b00

dptx_reg_34A4_dp_trans_4p[3:2] = 2'b00 dptx_reg_35F0_dp_trans_4p[3:2] = 2'b00

3.8.5.5.3 Training Pattern (1/2/3/4)

Normal mode : $dptx_reg_3400_dp_trans_4p[15:12] = 4'b0000$ Training Pattern 1: $dptx_reg_3400_dp_trans_4p[15:12] = 4'b0001$ Training Pattern 2: $dptx_reg_3400_dp_trans_4p[15:12] = 4'b00100$ Training Pattern 3: $dptx_reg_3400_dp_trans_4p[15:12] = 4'b01000$ Training Pattern 4: $dptx_reg_3400_dp_trans_4p[15:12] = 4'b100000$

3.8.5.5.4 CTS Pattern

CP2520 pattern 1: dptx_reg_3478_dp_trans_4p[0] CP2520 pattern 2: dptx_reg_3478_dp_trans_4p[1] PRBS pattern: dptx_reg_3444_dp_trans_4p[3]

3.8.5.5.5 Alternate Scrambler Seed Reset (ASSR)

Scrambler Seed Reset = hfffe dptx_reg_3404_dp_trans_4p[1]

3.8.5.5.6 Enhanced Frame Mode

dptx_reg_3000_dp_enc_4p[4]

3.8.5.5.7 Pre-Lane Mux

dptx_reg_3404_dp_trans_4p[1:0]: Lane0 mux dptx_reg_3404_dp_trans_4p[3:2]: Lane1 mux dptx_reg_3404_dp_trans_4p[5:4]: Lane2 mux dptx_reg_3404_dp_trans_4p[7:6]: Lane3 mux

3.8.5.5.8 Post-Lane Mux

dptx_reg_3408_dp_trans_4p[9:8]: Lane0 mux dptx_reg_3408_dp_trans_4p[11:10]: Lane1 mux dptx_reg_3408_dp_trans_4p[13:12]: Lane2 mux dptx_reg_3408_dp_trans_4p[15:14]: Lane3 mux

3.8.5.5.9 Post-PN Swap

dptx_reg_3406_dp_trans_4p[1]: PN swap

3.8.5.5.10 Initial Setting

RGB 30BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h02 RGB 24BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h03 RGB 18BPP: dptx_reg_303C_dp_enc_4p[14:8] = 7'h04 MISC0: dptx_reg_3034_dp_enc_4p[7:0], value according to DP specification. MISC1: dptx_reg_3034_dp_enc_4p[15:8]

3.8.5.5.11 MSA Delay Line Setting

dptx_reg_32F8_dp_enc_4p_2[8]: MSA line delay function enable dptx_reg_32F8_dp_enc_4p_2[7:0]: Line delay count

3.8.5.5.12 TU Calculation

 $TU \ num = 64 \times \frac{pixel_bpp \times pixel_rate}{lane_num \times link_rate \times 8} = 64 \times \frac{pixe_bpp \times M \ value}{lane_num \times N \ value \times 8}$ $dptx_reg_33C0_dp_enc_4p_2[6:0]: Read hardware TU number$

3.8.5.5.13 AUX PHY Initial Setting

dptx_reg_367C_dp_tx_aux[12] = 1'b1
dptx_reg_3670_dp_tx_aux[10] = 1'b0
dptx_reg_3658_dp_tx_aux[10] = 1'b0

3.8.5.5.14 AUX 400us Timeout Threshold

dptx_reg_360C_dp_tx_aux[12:0]: The unit is xtal period.

3.8.5.5.15 DPCD Write

dptx_reg_3644_dp_tx_aux[3:0]: Request command {dptx_reg_364C_dp_tx_aux, dptx_reg_3648_dp_tx_aux[15:0]}: Request address dptx_reg_3650_dp_tx_aux[15:12]: Request length dptx_reg_3634_dp_tx_aux[7:0]: Request write data dptx_reg_3630_dp_tx_aux[3]: Request ready

Repeat based on data_num

Figure 3-80 DPCD writing flow

dptx_reg_3640_dp_tx_aux[6]: Sink reply complete IRQ dptx_reg_3640_dp_tx_aux[0]: AUX timeout IRQ dptx_reg_3624_dp_tx_aux[3:0]: Sink reply command

3.8.5.5.16 DPCD Read

These control registers are the same as DPCD write registers.

dptx_reg_3620_dp_tx_aux[8]: The software reads data pulse.

Repeat based on data_num

Figure 3-81 DPCD Reading Flow

3.8.5.5.17 I2C Write

The flow is the same as that of DPCD write.

3.8.5.5.18 I2C Write No Length

This flow is different. Since the AUX sequence has no length, data_num and wdata can be ignored. Note that no_length has to be cleared after the communication is completed.

dptx_reg_362C_dp_tx_aux[0]: No length setting

Figure 3-82 I2C Writing Flow

3.8.5.5.19 I2C Read

The flow is the same as that of DPCD read.

3.8.5.5.20 I2C Read No Length

The flow is the same as DPCD write no length, but it is a write command.

3.8.5.5.21 AUX PHY FIFO Status

dptx_reg_368C_dp_tx_aux[0]: RX FIFO done flag dptx_reg_368C_dp_tx_aux[1]: Clear RX FIFO done flag dptx_reg_368C_dp_tx_aux[2]: TX FIFO done flag dptx_reg_368C_dp_tx_aux[3]: Clear TX FIFO done flag

When toggling dptx_reg_3620_dp_tx_aux[8], the software could poll dptx_reg_368C_dp_tx_aux[0]. If this bit is 1'b0, it will read the next data. Before reading the next data, clear the dptx_reg_368C_dp_tx_aux[0] status by dptx_reg_368C_dp_tx_aux[1].

When toggling dptx_reg_3634_dp_tx_aux, the software could poll dptx_reg_368C_dp_tx_aux[2]. If this bit is 1'b0, it will write the next data to this FIFO. Before writing the next data to TX FIFO, clear the dptx_reg_368C_dp_tx_aux[2] status by dptx_reg_368C_dp_tx_aux[3].

3.8.5.5.22 AUX TX Request Pre-charge + Preamble Number

dptx_reg_3630_dp_tx_aux[15:8]: pre-charge + preamble number

3.8.6 High-Definition Multimedia Interface Transmitter (HDMITX)

3.8.6.1 Overview

The HDMITX module encodes video, audio, and control data into Transition-Minimized Differential Signaling (TMDS) format for digital transmission based on HDMI Specification 2.0b and transfers the uncompressed digital data streams to an HDMI-compatible sink device.

3.8.6.2 Features

The HDMITX supports the following video features:

- Deep Color mode: up to 16 bits
- Maximum operating frequency: up to 594 MHz
- Video color space options: RGB444, YCbCr 4:2:2 (ITU 601 and 709), YCbCr 4:4:4 (ITU 601 and 709), YCbCr 4:2:0, and xvYCC
- 3D HDMI function
- SD mode resolutions:

- 1440 × 480i (pixel repeat 2) @59.94/60 Hz
- 720 × 480p @ 59.94/60 Hz
- 1440 × 576i (pixel repeat 2) @50 Hz
- 720 × 576p @50 Hz
- HD/FHD/UFHD mode resolutions:
 - 1280 × 720p @ 59.94/60/50 Hz
 - 1920 × 1080i @ 59.94/60/50 Hz
 - 1920 × 1080p @ 59.94/60/50 Hz
 - 1920 × 1080p @ 23.97/24 Hz
 - 1920 × 1080p @ 25 Hz
 - 1920 × 1080p @ 29.97/30 Hz
 - 3840 × 2160p @ 29.97/30 Hz
 - 3840 × 2160p @ 59.94/60/50 Hz

The HDMITX supports the following audio features:

- Single compressed S/PDIF IEC61937 (up to 192 kHz)
- Single LPC S/PDIF IEC60958 (up to 192 kHz and up to 24 bits), 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, 192 kHz
- Multi-channel PCM (Pulse-Code Modulation) input (maximum 8 channels)
- DSD audio
- Compressed lossless audio according to HDMI 2.0 (Dolby TrueHD and DTS-HD)

Additionally, the HDMITX supports the following general features:

- HPD line
- Discovery by EDID
- Compatible with DVI 1.0
- HDCP 1.4/HDCP 2.3 function
- Supports dynamic metadata up to 2KB
- I²C-based Display Data Channel (DDC) with clock stretching
- Variable Refresh Rate (VRR)/Auto Low Latency Mode (ALLM)
- CEC channel shared with HDMIRX

3.8.6.3 Block Diagram

Figure 3-83 is the HDMITX block diagram.

Figure 3-83 HDMITX Block Diagram

3.8.6.4 HDMITX Signal Descriptions

Table 3-73 presents HDMITX signal descriptions.

Signal Name Type Description Ball Location					
Signar Name	iyhe	Description	Bail Location		
HDMITX20_CEC	DIO	HDMITX CEC channel	AC33, T30		
HDMITX20_HTPLG	DI	HDMITX HPD line	R31, AC32		
HDMITX20_PWR5V	DO	HDMITX power supply (+5 V)	AB32, AB34		
HDMITX20_SCL	DIO	HDMITX DDC/I2C clock	T31, AD32		
HDMITX20_SDA	DIO	HDMITX DDC/I2C data	AD33, U32		
HDMITX21_CH0_M	AO	HDMITX TMDS data lane 0 (negative)	AN34		
HDMITX21_CH0_P	AO	HDMITX TMDS data lane 0 (positive)	AN35		
HDMITX21_CH1_M	AO	HDMITX TMDS data lane 1 (negative)	AM37		
HDMITX21_CH1_P	AO	HDMITX TMDS data lane 1 (positive)	AM36		
HDMITX21_CH2_M	AO	HDMITX TMDS data lane 2 (negative)	AL35		
HDMITX21_CH2_P	AO	HDMITX TMDS data lane 2 (positive)	AK35		
HDMITX21_CLK_M	AO	HDMITX TMDS clock lane (negative)	AR35		
HDMITX21_CLK_P	AO	HDMITX TMDS clock lane (positive)	AR34		

Table 3-73 HDMITX Signal Descriptions

3.8.6.5 Theory of Operations

Data is transmitted in the same way as described in the specification of HDMI 2.0b.

3.8.6.6 Programming Guide

To start HDMITX function, follow the sequence to program the settings:

- 1. HDMITX analog clock configuration
- 2. HDMITX pixel clock configuration
- 3. Deep color mode selection
- 4. Audio mode configuration
- 5. Packet content configuration
- 6. Optional HDCP configuration

3.9 Imaging

The Camera Imaging Subsystem (CAMSYS) is built around a feature-rich Image Signal Processor (ISP) and a deep learning Face Detection (FD) engine. The ISP processes data received either from camera sensors through MIPI CSI-2 interface or system DRAM.

3.9.1 Camera Image Signal Processor (ISP)

The Image Signal Processor (ISP) is responsible for processing the image data generated by the camera sensor of a device. The ISP converts the captured data into a digital format and enhances the image quality before displaying it on the screen or storing it in memory.

3.9.1.1 ISP Features

The ISP supports the following key features:

- 3 × MIPI CSI-2 high-speed camera serial interfaces:
 - Up to 4 × data lanes of MIPI D-PHY 2.5 Gbps per lane
 - Up to 3 × trios of MIPI C-PHY 4.5 Gsps per trio
- Sensor supported format:
 - RAW8/RAW10/RAW12/RAW14
 - YUV422 8-bit (only dump DRAM)
- Single camera capture: up to 32MP at 30fps
- Dual camera capture: up to 16MP + 16MP at 30fps
- ISP image processing capability: 400MP/sec
- Video High Dynamic Range (HDR) with stagger HDR sensor: up to 12MP at 30fps
- Full size image capture for preview
- Image processing functions:
 - Auto sensor defect pixel correction

© 2023-2024 MediaTek Inc. All rights reserved.

- Lens shading correction
- Edge enhancement
- Video stabilization
- Motion compensated temporal noise reduction for video recording
- Electronic image stabilization
- Multiple frame noise reduction for image capture
- Zero shutter delay image capture
- Preference color adjustment
- AE (Auto Exposure)/AWB (Auto White Balance)/AF (Auto Focus) statistics collection
- Three-frame stagger HDR fusion
- Color aberration correction
- Anti-blooming correction
- YUV frame buffer compression

3.9.1.2 ISP Block Diagram

Figure 3-84 Block Diagram of ISP

The ISP consists of 2 main engines: Pass 1 (P1) and Pass 2 (P2).

- P1 receives raw data from the camera sensor, executes lens and sensor compensation algorithms, and converts the image into YUV format.
- P2 obtains data from P1 through DRAM and further enhances the image quality, such as noise reduction, preference color adjustment, edge enhancement, etc.

Note:

• The block diagram only represents a typical use case. The path may differ for other scenarios, such as debugging, tuning and engineering modes.

3.9.1.3 Camera Signal Descriptions

Table 3-74 presents camera signal descriptions.

Table 3-74	Camera	Sianal	Descriptions	
10010 0 74	cuniciu	Signai	Descriptions	

Signal Name	Туре	Description	Ball Location
CMFLASHO	DO	Camera flash strobe 0	AC7, V4, G4

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Signal Name	Туре	Description	Ball Location
CMFLASH1	DO	Camera flash strobe 1	V5, G3, AB4
CMFLASH2	DO	Camera flash strobe 2	AA35, J31, E3
CMFLASH3	DO	Camera flash strobe 3	G5, Y11, K30,
CMMCLK0	DO	Sensor reference clock 0	E4
CMMCLK1	DO	Sensor reference clock 1	E5
CMMCLK2	DO	Sensor reference clock 2	F4
CMVREFO	DO	Camera frame sync 0	V6, AD11, W4
CMVREF1	DO	Camera frame sync 1	AD10, W5, T11
CMVREF2	DO	Camera frame sync 2	AB2, V7, AA11
CMVREF3	DO	Camera frame sync 3	AB1, V8, Y5
CMVREF4	DO	Camera frame sync 4	G36, U7, G4
CMVREF5	DO	Camera frame sync 5	U8, H36, G3
CMVREF6	DO	Camera frame sync 6	T9, J36, W8
CMVREF7	DO	Camera frame sync 7	T10, J37, AA35

3.9.2 Face Detection (FD)

3.9.2.1 Overview

The Face Detection (FD) engine uses a convolutional neural network algorithm to detect faces on a source image and output the detected coordinates of the face windows and their confidence values.

3.9.2.2 Features

The FD engine supports the following key features:

- Input image formats:
 - YUV420: 2 planes (Y/UV)
 - YUV422: 2 planes (Y/UV, Y/VU)
 - YUV422: 1 plane (YUYV, YVYU, UYVY, VYUY)
 - Mono 8-bit 1 plane
- YUV to RGB888 format conversion
- Image up/down-scaling
 - Maximum resize width: 640 pixels
 - Maximum throughput
 - 800 × 600@30 FPS

3.9.2.3 Block Diagram

Figure 3-85 is the block diagram of FD.

Figure 3-85 Block Diagram of AIE2.0

3.9.2.4 Function Description

The FD is a simple DRAM access engine supporting YUV420 and mono input images and building the image pyramid by the up/down-size resizer inside the FD. YUV2RGB is directly linked to RS (resizer) to reduce DRAM bandwidth. After converting YUV420 to RGB888 and building an image pyramid, FD starts several face detection loops and outputs the detected coordinates of the face window and their confidence values.

3.9.2.5 Programming Guide

Step 1: Program FDVT frame-level registers

To program the FD, the first step is programming frame-level registers by the APB interface. These registers contain the information of configuration DRAM base address, resizer loop number, face detection loop number, etc.

Step 2: Place YUV2RGB, RS, and FD configurations to DRAM

After programming the corresponding configuration DRAM base address, place the YUV2RGB, RS, and FD configurations into DRAM. The sequencer inside the FD goes to the corresponding address to get the configuration during different stages.

Step 3: Trigger FDVT start register

Program the FDVT_START register.

Step 4: Wait for FDVT interrupt

Once the programming of FD is done, an interrupt is generated.

3.9.3 Camera Serial Interface (CSI)

3.9.3.1 Overview

The CSI is based on the MIPI Alliance Specification for Camera Serial Interface 2 (MIPI CSI-2) Version 2.1. The CSI provides high-speed serial data transfer between the ISP and external camera image sensors.

The device features two MIPI CSI-2 controllers (CSI0 and CSI1), which are fully compliant with the MIPI CSI-2 specification. The CSI0 controller and the CSI1 controller utilize a combined MIPI D-PHY/C-PHY physical layer. The PHY layer is based on

MIPI D-PHY Specification Revision 2.1 and MIPI C-PHY Specification Revision 1.2. It acts as a physical link between the CSI controllers and image sensors.

3.9.3.2 Features

The MIPI CSI-2 implementation in the device provides the following key features:

- Primary CSI-2 interface (CSIO), which can be used in the following configuration:
 - Two 2-data lane interfaces in D-PHY mode, or
 - One 4-data lane interface in D-PHY mode, or
 - One 3-trio interface in C-PHY mode, or
 - Two 2-trio interfaces in C-PHY mode
 - D-PHY supports 2.5Gbps per lane and C-PHY supports 4.5Gsps per trio
- Secondary CSI-2 interface (CSI1), which can be used in one of the following configurations:
 - One 4-data lane interface in D-PHY mode, or
 - One 3-trio interface in C-PHY mode
 - DPHY supports 2.5Gbps per lane and C-PHY supports 4.5Gsps per trio
- Pixel formats: RAW8/RAW10/RAW12/RAW14/YUV422 8-bit
- No support for D-PHY escape mode and bus turnaround

3.9.3.3 CSI Signal Descriptions

Table 3-75 presents CSIO signal descriptions.

Table 3-75 CSI0 Signal Descriptions

Signal Name	Туре		Description			Ball Location
		1 × D-PHY 4- lane Mode	2 × D-PHY 2-lane Mode	1 × C-PHY 3- trio Mode	2 × C-PHY 2-trio Mode	
CSIOA_LON_TOB	AIO	CSIO data lane 2 (negative)	CSIO port 0 data lane 0 (negative)	CSI0 Trio0 B	CSIO port 0 Trio0 B	N3
CSIOA_LOP_TOA	AIO	CSIO data lane 2 (positive)	CSIO port 0 data lane 0 (positive)	CSI0 Trio0 A	CSIO port 0 Trio0 A	N2
CSIOA_L1N_T1A	AIO	CSIO data lane O (negative)	CSIO port 0 clock lane (negative)	CSI0 Trio1 A	CSIO port 0 Trio1 A	N5
CSIOA_L1P_TOC	AIO	CSI0 data lane 0 (positive)	CSIO port 0 clock lane (positive)	CSI0 Trio0 C	CSIO port 0 Trio0 C	N4
CSIOA_L2N_T1C	AIO	CSIO clock lane (negative)	CSIO port 0 data lane 1 (negative)	CSI0 Trio1 C	CSIO port 0 Trio1 C	N6
CSIOA_L2P_T1B	AIO	CSIO clock lane (positive)	CSIO port 0 data lane 1 (positive)	CSIO Trio1 B	CSIO port 0 Trio1 B	M6
CSIOB_LON_TOB	AIO	CSIO data lane 1 (negative)	CSIO port 1 data lane 0 (negative)	CSIO Trio2 B	CSIO port 1 TrioO B	P1

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Signal Name	Туре		Description			
CSIOB_LOP_TOA	AIO	CSIO data lane 1 (positive)	CSIO port 1 data lane 0 (positive)	CSI0 Trio2 A	CSIO port 1 Trio0 A	P2
CSIOB_L1N_T1A	AIO	CSIO data lane 3 (negative)	CSIO port 1 clock lane (negative)	-	CSIO port 1 Trio1 A	Р4
CSIOB_L1P_TOC	AIO	CSIO data lane 3 (positive)	CSIO port 1 clock lane (positive)	CSI0 Trio2 C	CSIO port 1 Trio0 C	Р3
CSIOB_L2N_T1C	AIO		CSIO port 1 data lane 1 (negative)		CSIO port 1 Trio1 C	P6
CSIOB_L2P_T1B	AIO		CSIO port 1 data lane 1 (positive)		CSIO port 1 Trio1 B	Ρ5

Note:

• Unused CSI ports could be connected to GND or set in not connected.

Table 3-76 presents CSI1 signal descriptions.

Table 3-76 CSI1 Signal Descriptions					
Signal Name	Туре	Descri	Description		
		1× D-PHY 4-lane Mode	1 × C-PHY 3-trio Mode		
CSI1A_LON_TOB	AIO	CSI1 data lane 2 (negative)	CSI1 Trio0 B	J4	
CSI1A_LOP_TOA	AIO	CSI1 data lane 2 (positive)	CSI1 Trio0 A	J5	
CSI1A_L1N_T1A	AIO	CSI1 data lane 0 (negative)	CSI1 Trio1 A	J3	
CSI1A_L1P_T0C	AIO	CSI1 data lane 0 (positive)	CSI1 Trio0 C	J2	
CSI1A_L2N_T1C	AIO	CSI1 clock lane (negative)	CSI1 Trio1 C	К6	
CSI1A_L2P_T1B	AIO	CSI1 clock lane (positive)	CSI1 Trio1 B	К7	
CSI1B_LON_TOB	AIO	CSI1 data lane 1 (negative)	CSI1 Trio2 B	К3	
CSI1B_LOP_TOA	AIO	CSI1 data lane 1 (positive)	CSI1 Trio2 A	К5	
CSI1B_L1N_T1A	AIO	CSI1 data lane 3 (negative)	-	L4	
CSI1B_L1P_T0C	AIO	CSI1 data lane 3 (positive)	CSI1 Trio2 C	L3	

Note:

• Unused CSI ports could be connected to GND or set in not connected.

3.9.3.4 CSI Timing Characteristics

The CSI timing characteristics are compliant with MIPI CSI-2 Specification v2.1, MIPI D-PHY Specification v1.2, and MIPI C-PHY Specification v1.2.

Description	Min	Тур	Max	Unit	Note
High speed date rate	80	-	2500	Mbps	
High speed common point voltage	70	-	330	mV	
High speed differential input high voltage	-	-	40	mV	
High speed differential input low voltage	-40	-	-	mV	

Table 3-77 MIPI D-PHY RX Electrical Characteristics

© 2023-2024 MediaTek Inc. All rights reserved.

Page 163 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Description	Min	Тур	Max	Unit	Note
High speed single ended input high voltage	-	-	460	mV	
High speed single ended input low voltage	-40	-	-	mV	
High speed differential input impedance	80	100	125	Ω	
Low power logic 1 input voltage	740	-	-	mV	
Low power logic 0 input voltage	-	-	550	mV	
Low power input hysteresis	25	-	-	mV	
Minimum pulse width response	20	-	-	ns	

3.9.3.5 Block Diagram

Figure 3-86 shows the block diagram of the CSI modules. The CDPHY_TOP module is for DPHY and CPHY data reception. The seninf controller is used for unpacking the MIPI stream into pixel data format by MIPI CSI2. The seninf_top_mux is used for selecting pixel data generated by the CSI2 controller and transferring them to seninf_mux, and the seninf_mux selects one group or test model signal and transfers the pixel data to seninf_cam_mux. Then, each seninf_cam_mux selects the pixel data from one of the seninf_muxes. The buffer in the seninf_mux serves as a horizontal blanking (temporal) buffer for pixel data, and ISP reads out one or more pixel data from the buffer during the horizontal period, so the ISP clock frequency can be reduced. CKSYS, the Clock System, is used for generating proper clocks to external camera sensor modules (MCLK).

Figure 3-86 Block Diagram of CSI Modules (D-PHY and C-PHY mode)

3.9.3.6 Theory of Operations

The block diagram has one DPHY_TOP module, and it can connect with a 4D1C sensor. The seninf1 is responsible for receiving data from sensor and de-packeting the MIPI byte data to pixel data. The seninf_top_mux module can switch different groups to different seninf_muxes. Each seninf_mux has a buffer to store the pixel data generated from seninf.

3.9.3.7 Programming Guide

• CSI programming sequence

Figure 3-87 CSI Programming Sequence

CSI basic register setting

This part takes a basic register setting as an example to show that MIPI sensor data stream can pass through seninf_top to ISP pass1. See the red thread in Figure 3-88.

Figure 3-88 Seninf_top Basic Data Path (One Port)

• Load default setting

Table 3-78 Load Default Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Set CSI Register Reset	TOPRGUWDT_SWSYSRST	camsys_rst	1'b1	0x10007018
2	Wait for 1 µs				
3	Release CSI Register Reset	TOPRGUWDT_SWSYSRST	camsys_rst	1'b0	0x10007018
4	Set Seninf_top Clock On	CAMSYS_CG_CON		1'b0	0x16000000
5	Set Seninf_top Reset	CAMSYS_SW_RST	seninf_top_sw_rst	2'b11	0x160000A0
6	Wait for 1 µs				
7	Release Seninf_top Reset	CAMSYS_SW_RST	seninf_top_sw_rst	2'b00	0x160000A0

Performance setting

Table 3-79 Performance Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
	CSIOA	CSIOA_CDPHY_RX_ANA_1	RG_CSIOA_BG_LPRX_VTL_SEL[2:0]	3'b100	0x11ED0004
1	performance	CSIOA_CDPHY_RX_ANA_1	RG_CSIOA_BG_LPRX_VTH_SEL[2:0]	3'b100	0x11ED0004
	setting	CSIOA_CDPHY_RX_ANA_1	RG_CSIOA_BG_VREF_SEL[3:0]	4'b1000	0x11ED0004
	CSIOB	CSIOB_CDPHY_RX_ANA_1	RG_CSIOB_BG_LPRX_VTL_SEL[2:0]	3'b100	0x11ED1004
2	performance	CSIOB_CDPHY_RX_ANA_1	RG_CSIOB_BG_LPRX_VTH_SEL[2:0]	3'b100	0x11ED1004
	setting	CSIOB_CDPHY_RX_ANA_1	RG_CSIOB_BG_VREF_SEL[3:0]	4'b1000	0x11ED1004

• eFuse reading

Read eFuse value according to eFuse map, and set the eFuse value to the corresponding registers.

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
		A_CSI_0	rg_csi0a_l0p_t0a_hsrt_code[4:0]	0x11F2018C[4:0]	0x11F2018C
		A_CSI_0	rg_csi0a_l0n_t0b_hsrt_code[4:0]	0x11F2018C[9:5]	0x11F2018C
		A_CSI_0	rg_csi0a_l1p_t0c_hsrt_code[4:0]	0x11F2018C[14:10]	0x11F2018C
		A_CSI_0	rg_csi0a_l1n_t1a_hsrt_code[4:0]	0x11F2018C[19:15]	0x11F2018C
1	Read eFuse	A_CSI_0	rg_csi0a_l2p_t1b_hsrt_code[4:0]	0x11F2018C[24:20]	0x11F2018C
1	value	A_CSI_0	rg_csi0a_l2n_t1c_hsrt_code[4:0]	0x11F2018C[29:25]	0x11F2018C
		A_CSI_1	rg_csi0b_l0p_t0a_hsrt_code[4:0]	0x11F20190[4:0]	0x11F20190
		A_CSI_1	rg_csi0b_l0n_t0b_hsrt_code[4:0]	0x11F20190[9:5]	0x11F20190
		A_CSI_1	rg_csi0b_l1p_t0c_hsrt_code[4:0]	0x11F20190[14:10]	0x11F20190
		A_CSI_1	rg_csi0b_l1n_t1a_hsrt_code[4:0]	0x11F20190[19:15]	0x11F20190
		CSIOA_CDPHY_RX_ANA_2	RG_CSIOA_LOP_TOA_HSRT_CODE[4:0]	rg_csi0a_l0p_t0a_hsrt_code[4:0]	0x11ED0008
		CSIOA_CDPHY_RX_ANA_2	RG_CSIOA_LON_TOB_HSRT_CODE[4:0]	rg_csi0a_l0n_t0b_hsrt_code[4:0]	0x11ED0008
2	termination control	CSIOA_CDPHY_RX_ANA_3	RG_CSIOA_L1P_T0C_HSRT_CODE[4:0]	rg_csi0a_l1p_t0c_hsrt_code[4:0]	0x11ED000C
2	registers	CSIOA_CDPHY_RX_ANA_3	RG_CSIOA_L1N_T1A_HSRT_CODE[4:0]	rg_csi0a_l1n_t1a_hsrt_code[4:0]	0x11ED000C
	setting	CSIOA_CDPHY_RX_ANA_4	RG_CSIOA_L2P_T1B_HSRT_CODE[4:0]	rg_csi0a_l2p_t1b_hsrt_code[4:0]	0x11ED0010
		CSIOA_CDPHY_RX_ANA_4	RG_CSIOA_L2N_T1C_HSRT_CODE[4:0]	rg_csi0a_l2n_t1c_hsrt_code[4:0]	0x11ED0010
	CSIOB	CSIOB_CDPHY_RX_ANA_2	RG_CSIOB_LOP_TOA_HSRT_CODE[4:0]	rg_csi0b_l0p_t0a_hsrt_code[4:0]	0x11ED1008
	termination	CSIOB_CDPHY_RX_ANA_2	RG_CSIOB_LON_TOB_HSRT_CODE[4:0]	rg_csi0b_l0n_t0b_hsrt_code[4:0]	0x11ED1008
3		CSIOB_CDPHY_RX_ANA_3	RG_CSIOB_L1P_T0C_HSRT_CODE[4:0]	rg_csi0b_l1p_t0c_hsrt_code[4:0]	0x11ED100C
	registers setting	CSIOB_CDPHY_RX_ANA_3	RG_CSI0B_L1N_T1A_HSRT_CODE[4:0]	rg_csi0b_l1n_t1a_hsrt_code[4:0]	0x11ED100C

Table 3-80 eFuse Reading

• 4-lane DPHY cam mode

Table 3-81 4-Lane DPHY Cam Mode

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
		CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L0_CKMODE_EN	1'b0	0x11ED0000
		CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L0_CKSEL	1'b1	0x11ED0000
		CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L1_CKMODE_EN	1'b0	0x11ED0000
1	Data lane setting	CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L1_CKSEL	1'b1	0x11ED0000
1	Data lane setting	CSIOB_CDPHY_RX_ANA_0	RG_CSIOB_DPHY_L0_CKMODE_EN	1'b0	0x11ED1000
		CSIOB_CDPHY_RX_ANA_0	RG_CSIOB_DPHY_L0_CKSEL	1'b1	0x11ED1000
		CSIOB_CDPHY_RX_ANA_0	RG_CSIOB_DPHY_L1_CKMODE_EN	1'b0	0x11ED1000
		CSIOB_CDPHY_RX_ANA_0	RG_CSIOB_DPHY_L1_CKSEL	1'b1	0x11ED1000
2	Clock lane setting	CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L2_CKMODE_EN	1'b1	0x11ED0000
2	CIOCK IATHE SELLING	CSIOA_CDPHY_RX_ANA_0	RG_CSIOA_DPHY_L2_CKSEL	1'b1	0x11ED0000

• Set lane enable

CSI 4D1C lane enable top programming outline

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address	
1	Configure clock lane	DPHY_RX_LANE_EN	dphy_rx_lc0_en	1'b1	0x11ED2000	
		DPHY_RX_LANE_EN	dphy_rx_lc1_en	1'b0	0x11ED2000	
		DPHY_RX_LANE_EN	dphy_rx_ld0_en	1'b1	0x11ED2000	
2	Set data lane enable	DPHY_RX_LANE_EN	dphy_rx_ld1_en	1'b1	0x11ED2000	
		DPHY_RX_LANE_EN	dphy_rx_ld2_en	1'b1	0x11ED2000	
		DPHY_RX_LANE_EN	dphy_rx_ld3_en	1'b1	0x11ED2000	
3	Disable software reset	DPHY_RX_LANE_EN	dphy_rx_sw_rst	1'b0	0x11ED2000	

Table 3-82 4D1C Lane Enable Top Programming Outline

• Set clock mux and lane mux

CSI 4D1C clock lane and data lane setting top programming outline

Table 3-83 4D1C Clock Lane and Data Lane Setting Top Programming Outline

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	CK_DATA Mux enable	DPHY_RX_LANE_SELECT	dphy_rx_ck_data_mux_en	1'b1	0x11ED2004
2	Configure clock lane	DPHY_RX_LANE_SELECT	rg_dphy_rx_lc0_sel	3'h2	0x11ED2004
		DPHY_RX_LANE_SELECT	rg_dphy_rx_ld0_sel	3'h1	0x11ED2004
3	Set data lane	DPHY_RX_LANE_SELECT	rg_dphy_rx_ld1_sel	3'h3	0x11ED2004
	enable	DPHY_RX_LANE_SELECT	rg_dphy_rx_ld2_sel	3'h0	0x11ED2004
		DPHY_RX_LANE_SELECT	rg_dphy_rx_ld3_sel	3'h4	0x11ED2004
		DPHY_RX_CLOCK_LANE0_HS_PARAMETER	rg_dphy_rx_lc0_hs_settle_parameter	8'h28	0x11ED2010
		DPHY RX DATA LANEO HS PARAMETER	rg_cdphy_rx_ld0_trio0_hs_settle_para meter	8'h28	0x11ED2020
4	Configure settle time	DPHY RX DATA LANE1 HS PARAMETER	rg_cdphy_rx_ld1_trio1_hs_settle_para meter	8'h28	0x11ED2024
		DPHY_RX_DATA_LANE2_HS_PARAMETER	rg_cdphy_rx_ld2_trio2_hs_settle_para meter	8'h28	0x11ED2028
		DPHY RX DAIA LANES HS PARAMETER	rg_cdphy_rx_ld3_trio3_hs_settle_para meter	8'h28	0x11ED202C

• phy_seninf_mux_setting

Table 3-84 Phy_seninf_mux_0 Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Enable seninf_top D-PHY mux 0	SENINF_TOP_PHY_CTRL_CSIO	phy_seninf_mux0_dphy_en	1'b1	0x16010060

• seninf setting

Table 3-85 Seninf1 Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Enable CSI2	SENINF_CSI2_CTRL	rg_seninf_csi2_en	1'b1	0x16010210
2	Enable seninf	SENINF_CTRL	seninf_en	1'b1	0x16010200
3	Enable CSI2 lane numbers	SENINF CSI2 EN	csi2_lane0_en csi2_lane1_en	4'b1111	0x16010A00

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
			csi2_lane2_en		
			csi2_lane3_en		
4	Assert CSI2 software reset	SENINF CSI2 CTRL	seninf csi2 sw rst	1'b1	0x16010210
5	De-assert CSI2 software reset	SEININF_CSIZ_CTRE	semm_csiz_sw_ist	1'b0	0X10010210

• seninf_top_mux setting

Table 3-86 Seninf_top_mux Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Seninf top mux 1 input source selection	SENINF_TOP_MUX_CTRL_0	rg_seninf_mux1_src_sel	4'b0000	0x16010010

• seninf_mux_1 setting

Table 3-87 Seninf_mux_1 Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Disable seninf mux 1		seninf_mux_en	1'b0	
2	Assert seninf mux 1 software reset		seninf_mux_sw_rst	1'b1	
3	Assert seninf mux 1 IRQ software reset	SENINF_MUX_CTRL_0	seninf_mux_irq_sw_rst	1'b1	0x16010D00
4	De-assert seninf mux 1 IRQ software reset		seninf_mux_irq_sw_rst	1'b0	
5	De-assert seninf mux 1 software reset		seninf_mux_sw_rst	1'b0	
6	Select seninf mux 1 input source	SENINF_MUX_CTRL_1	rg_seninf_mux_src_sel	4'b1000	0x16010D04
7	Enable seninf mux 1	SENINF_MUX_CTRL_0	seninf_mux_en	1'b1	0x16010D00

seninf_cam_mux setting

Table 3-88 Seninf_cam_mux Setting

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	Enable seninf cam mux 0		seninf_cam_mux0_en	1'b1	
2	Disable seninf cam mux 1	SENINF_CAM_MUX_EN	seninf_cam_mux1_en	1'b0	0x16010410
3	Disable seninf cam mux 2		seninf_cam_mux2_en	1'b0	

• Analog PHY power on sequence

Table 3-89 Analog Power-On Sequence

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
1	BG Core Enable	CSI0A_CDPHY_RX_ANA_0	RG_CSIOA_BG_CORE_EN	1'b1	0x11ED0000
T		CSI0B_CDPHY_RX_ANA_0	RG_CSIOB_BG_CORE_EN	1'b1	0x11ED1000
2	Wait > 30 μs				
2	BG LPF Enable	CSI0A_CDPHY_RX_ANA_0	RG_CSIOA_BG_LPF_EN	1'b1	0x11ED0000
5		CSIOB_CDPHY_RX_ANA_0	RG_CSI0B_BG_LPF_EN	1'b1	0x11ED1000

		1
RG_CSI_BG_CORE_EN	time 30us	
RG_CSI_BG_LPF_EN		Internal bias and reference voltages are ready.

Figure 3-89 Power-On Sequence Timing

• Analog PHY powers off

Table 3-90 Analog Power-Off

Step	Description	Register Name	Register Bit Field	Bit Field Value	Address
		CSI0A_CDPHY_RX_ANA_0	RG_CSI0A_BG_CORE_EN	1'b0	0x11ED0000
1	BG Core and LPF Disable	CSI0B_CDPHY_RX_ANA_0	RG_CSI0B_BG_CORE_EN	1'b0	0x11ED1000
1		CSI0A_CDPHY_RX_ANA_0	RG_CSIOA_BG_LPF_EN	1'b0	0x11ED0000
		CSIOB_CDPHY_RX_ANA_0	RG_CSIOB_BG_LPF_EN	1'b0	0x11ED1000

3.9.3.8 External Sensor Clock Option

This section describes the master clock option for the image sensor. In most cases, the clock system of the external image sensor module requires a reference clock source. There are 3 master clocks named CMMCLK0, CMMCLK1 and CMMCLK2. The master clocks can be obtained from different clock sources that are not integrated in the CSI controller. The CKSYS provides a variety of master clock options from internal clock system. The supported clock can be 6/12/13/19.2/24/26/48/52 MHz.

Table 3-91 CAM_CLK Pad Configuration

Pin Name	Aux Func.0	Aux Func.1	Aux Func.2	Aux Func.3
CMMCLK0	B:GPIO 22	O:CMMCLK0		
CMMCLK1	B:GPIO 23	O:CMMCLK1		
CMMCLK2	B:GPIO 24	O:CMMCLK2		

In GPIO Aux function 1, these pins are connected to their clock mux.

3.10 Video

3.10.1 Video Encoder (VENC)

3.10.1.1 Overview

This Video Encoder (VENC) is a mainstream video encoder. It consists of 2 video encoders: H.264 and HEVC. The VENC is capable of encoding 4K video at 30 frames per second (FPS) with promising superior video quality for H.264 and HEVC. Furthermore, it supports pixel bit-depth up to 8 bits. This design also supports various encoding methods that satisfy basic requirements of easy software controllability. Furthermore, with advanced encoding technology, it delivers astonishing high quality video while maintaining low memory bandwidth requirements. The VENC also considers the usage of portable devices and provides several power saving capabilities.

3.10.1.2 Features

The VENC has the following main features:

- Uses DRAM as an input, output, and working buffer
- Reads input frame buffers, executes video encoding and writes encoded bit stream to the output buffer

- Support of YUV420 two-plane scan line (NV12/NV21) and YUV420 three-plane scan line (YV12/I420) color spaces
- Support RGB and ARGB input formats.

Table 3-92 presents the supported video formats and their capabilities.

Format	Feature	Details
	Profile	Main (8-bit)
H.264 Encoding	Level	L4.1
	Speed	4K@30fps
	Profile	Main (8-bit)
HEVC Encoding	Level	L4.1
	Speed	4K@30fps

Table 3-92 VENC Supported Formats

3.10.1.3 Block Diagram

Figure 3-90 shows a brief overview of the IP architecture and local on-chip-bus architecture. The interface for controlling it consists of ARM APB and MediaTek proprietary SMI (Smart Multimedia Interface) bus. It reports a hardware event through an interrupt or software polling. In addition, it adopts several SMI ports and one APB port. The video encoder core includes the following modules: DMA, ME, MC, TQ, DB, and EC. The input to the video encoder is image data. After the encoding process, the bitstream is sent to DRAM by the system bus.

Figure 3-90 Block Diagram of VENC

3.10.1.4 Function Description

The video encoder is configured by software through the APB interface. As the register is configured, the sequencer sends the corresponding control signals to trigger sub-modules.

- DMA acquires and stores back the image data and bitstream from and to memory according to the configured address.
- ME conducts motion estimation to decide motion vector for later encoding.
- MC conducts motion compensation to give predicted pixel values.

- **TQ** conducts transform and quantization operations and writes reconstructed pixels to DB and quantized transformed coefficients to EC.
- **DB** conducts de-blocking operations and allows DMA to store back the processed frame as the next frame's reference frame.
- **EC** conducts entropy encoding, and the coding can be variable length code, context based arithmetic code, or context based variable length code. The encoded bitstream is written to memory by DMA.

3.10.2 Video Decoder (VDEC)

3.10.2.1 Overview

The Video Decoder (VDEC) accelerator is designed to provide multi-standard video decoding, relieving the Central Processing Unit (CPU) load and providing high performance video. It receives a compressed video bitstream as input, performs the decoding process, and then sends the reconstructed video to the display.

3.10.2.2 Features

- HEVC
 - Main profile 4K2K @ 60fps/160 Mbps, 8 bits
 - Main 10 profile 4K2K @ 60fps/160 Mbps, 10 bits
- HEIF
 - Main profile maximum resolution 16383 × 16383, 8 bits
 - Main10 profile maximum resolution 16383 × 16383, 10 bits
- VP9
 - Profile 0 4K2K @ 60fps/120 Mbps, 8 bits
 - Profile 2 4K2K @ 60fps/120 Mbps, 10 bits
- AV1
 - Main profile 0 4K2K @ 60fps/120 Mbps, 8/10 bits
- AVC
 - Constrained Baseline 4K2K @ 60fps/160 Mbps, 8 bits
 - Main/High profile 4K2K @ 60fps/160 Mbps, 8 bits
 - High 10 profile 4K2K @ 60fps/160 Mbps, 10 bits
- MPEG-4
 - Simple Profile 1080p @ 60fps/60 Mbps, 8 bits
 - Advanced Simple Profile 1080p @ 60fps/60 Mbps, 8 bits
- MPEG-2
 - Main profile 1080p @ 60 fps/60 Mbps, 8 bits
- VP8
 - 1080p @ 60 fps/40 Mbps, 8 bits
- H.263
 - Baseline profile 1080p @ 60 fps/60 Mbps

3.11 Audio

3.11.1 Overview

The MediaTek audio system allows data exchange among the AP and external components. The following interfaces are available.

- Two I2S/Time Division Multiplexing (TDM) outputs
- Two I2S/TDM inputs
- One High-Definition Multimedia Interface (HDMI[™]) TX output
- One DisplayPort (DP) TX output
- One S/PDIF input
- One S/PDIF output
- One PCM interface with Sampling Rate Converter (SRC)
- One slave 8-channel I2S input (AUDIO IN)
- Four Pulse Density Modulation (PDM) interfaces for Digital Microphone Interface Controller (DMIC)
- One proprietary audio interface for the MediaTek PMIC codec (2-channel ADC and 2-channel DAC)

3.11.2 Features

- PMIC audio CODEC playing
 - Supports 8/11.025/12/16/22.05/24/32/44.1/48/96/192 kHz sampling rate playing
- PMIC audio CODEC recording
 - Supports 8/16/32/48/96/192 kHz sampling rate recording
- One master I2S output (I2SO1):
 - 2-channel I2S output. Sampling rates from 8 kHz to 192 kHz, up to 32 bits.
 - 16-channel TDM output. Sampling rates from 8 kHz to 48 kHz, up to 32 bits.
- One master or slave I2S output (I2SO2):
 - 8-channel I2S output. Sampling rates from 8 kHz to 192 kHz, up to 32 bits
 - 16-channel TDM output with 48 kHz sampling rate
- One master or slave I2S input (I2SIN):
 - 8-channel I2S input. Sampling rates from 8 kHz to 192 kHz and resolution up to 32 bits
 - 16-channel TDM input. Sampling rates from 8 kHz to 48 kHz, up to 32 bits, or 16-channel direct path to memory
- One master or slave TDM input (TDMIN):
 - 16-channel TDM output with 48 kHz sampling rate and bit resolution up to 32 bits
 - 2-channel I2S input. Sampling rates from 8 kHz to 192 kHz and resolution up to 32 bits
- One master 8-channel High-Definition Multimedia Interface (HDMI[™]) audio output (HDMITX):
 - Sampling rates from 8 kHz to 192 kHz with a resolution of up to 32 bits
 - 8-channel DisplayPort[™] audio output with sampling rates from 8 kHz to 192 kHz, up to 24 bits
- One S/PDIF input. Sampling rates include 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz
- One S/PDIF output with 32, 44.1, 48, 88.2, 96, and 192 kHz sampling rates
- One master or slave PCM interface with Sampling Rate Converter (SRC). Supported sampling rates: 8, 16, 32, 44.1, and 48 kHz with bit resolution up to 24 bits

- One slave 8-channel I2S input (AUDIO IN) with sampling rate from 8 kHz to 192 kHz with bit resolution up to 24 bits
- 4 × Pulse Density Modulation (PDM) interfaces for up to 4 stereo Digital Microphones (DMICs). Support of one-wire and two-wire modes with 8, 16, 32, and 48 kHz PCM sampling rates and 24 bits.
- A proprietary audio interface for PMIC CODEC
 - 2-channel DAC. Supports up to 192 kHz sampling rate
 - 2-channel ADC. Supports up to 192 kHz sampling rate
- Hardware gain function and general ASRC to enhance the audio quality and flexibility of mix engine. The flexible mix engine system for data exchange between the interfaces without CPU intervention.
 - 2 × stereo hardware gain
 - 12 × stereo general-purpose Asynchronous Sample Rate Converters (ASRC) for sampling rate conversion and slave mode clock tracking
 - 4 × stereo memory-based ASRC
 - 32-channel channel merge
 - 5 × APLL can support up to 5 clock rates at the same time
 - 64KB internal audio SRAM
- Voice wakeup (in MediaTek PMIC codec)

3.11.3 Block Diagram

Figure 3-91 illustrates the flexibility of the mix engine between audio interfaces.

Figure 3-91 Audio Interfaces Block Diagram

- 3.11.4 Function Description
- 3.11.4.1 Inter-IC Sound (I2S)

3.11.4.1.1 I2S Signal Descriptions

Table 3-93 presents I2S signal descriptions.

Туре	Description	Ball Location					
I2SIN							
DIO	I2SIN serial bit clock	M33, H36, H33, U10					
DI	I2SIN serial data input 0	J37, J33, M34, Y7					
DI	I2SIN serial data input 1	G33, G31, N33, Y8					
DI	I2SIN serial data input 2	G32, G30, M30, W7					
DI	I2SIN serial data input 3	H35, H32, M32, W3					
DIO	I2SIN master clock	H34, K30, Y10, G36					
DIO	I2SIN word select (left/right audio channel)	J34, M35, Y6, J36					
	DIO DI DI DI DI DI DI DIO	DIOI2SIN serial bit clockDII2SIN serial data input 0DII2SIN serial data input 1DII2SIN serial data input 2DII2SIN serial data input 3DII2SIN master clock					

Table 3-93 I2S Signal Descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Signal Name	Туре	Description	Ball Location
12501		·	
I2SO1_BCK	DO	I2SO1 serial bit clock	W7, G1, AD10, H32, M35
I2SO1_D0	DO	I2SO1 serial data output 0	N33, W8, E2, AB1, H35
I2SO1_MCK	DO	I2SO1 master clock	Y8, G2, M33, G30, AD11
I2SO1_WS	DO	I2SO1 word select (left/right audio channel)	F2, AB2, G32, M34, W3
12502			
I2SO2_BCK	DIO	I2SO2 serial bit clock	AC9, U10, H33
I2SO2_D0	DO	I2SO2 serial data output 0	AC4, Y7, J33
I2SO2_D1	DO	I2SO2 serial data output 1	AB3, Y8, G31
I2SO2_D2	DO	I2SO2 serial data output 2	AA8, W7, G30
I2SO2_D3	DO	I2SO2 serial data output 3	AC8, W3, H32
I2SO2_MCK	DO	I2SO2 master clock	Y10, H34, AB9
I2SO2_WS	DIO	I2SO2 word select (left/right audio channel)	Y6, J34, AB8
SPLIN (I2S AUDIO IN)			
SPLIN_BCK	DI	SPLIN serial bit clock	J36
SPLIN_D0	DI	SPLIN data 0	J37
SPLIN_D1	DI	SPLIN data 1	G33
SPLIN_D2	DI	SPLIN data 2	G32
SPLIN_D3	DI	SPLIN data 3	H35
SPLIN_LRCK	DI	SPLIN word select	H36
SPLIN_MCK	DI	SPLIN master clock	G36

3.11.4.1.2 I2S Timing Characteristics

Table 3-94 and Figure 3-92 present timing characteristics for the I2S modules in the device.

Table 3-94 I2S Timing Characteristics

No.	Parameter	Description	Min	Тур	Max	Unit
-	fs	Sampling frequency	8	-	192	kHz
IIS01	fc_мск	Cycle time, MCK (master clock)	-	-	24.576	MHz
-	fop_вск	Operation frequency, BCK	32 × fs	-	64 × fs	MHz
IIS03	t _{c_вск}	Cycle time, BCK	81.38	-	3906.25	ns
IIS04	t _{w_вск_н}	Pulse duration, BCK high	-	0.5	-	1/t с_вск
IIS05	t _{w_BCK_L}	Pulse duration, BCK low	-	0.5	-	1/t _{c_BCK}
-	t lrck	LRCK period	32	-	64	1/t с_ВСК
IIS06	t _{v_lrck}	BCK negative edge to LRCK valid	-	-	19	ns
IIS07	t _{v_DO}	BCK negative edge to DO valid	-	-	19	ns
IIS08	t _{su}	Setup time, DI	19	-	-	ns
IIS10	t _h	Hold time, DI	19	-	-	ns

Figure 3-92 I2S Master Mode Timing Diagram

3.11.4.2 Pulse Code Modulation (PCM)

3.11.4.2.1 PCM Signal Descriptions

Table 3-95 presents PCM signal descriptions.

Table 3-95 PCM Signal Descriptions

Signal Name	Туре	Description	Ball Location
PCM_CLK	DIO	PCM clock	G1, AD30
PCM_DI	DI	PCM data input	E2, AB31
PCM_DO	DO	PCM data output	AC30, F2
PCM_SYNC	DIO	PCM synchronization	AC31, G2

3.11.4.2.2 PCM Timing Characteristics

Table 3-96, Figure 3-93, and Figure 3-94 present timing characteristics for the PCM interfaces in the device.

No.	Parameter	Description	Min	Тур	Max	Unit
-	fs	Sampling frequency	8	-	48	kHz
PCM1	fclk	Serial clock frequency	0.256	-	3.072	MHz
-	tsync	Sync period	32	-	64	1/f _{CLK}
PCM2	t _{w_CLK_H}	Pulse duration, CLK high	-	0.5	-	1/f _{CLK}
PCM3	tw_clk_l	Pulse duration, CLK low	-	0.5	-	1/f _{CLK}
PCM4	t _{d_CLK_SYNC}	Delay time, output CLK low to SYNC valid	-	-	78	ns
PCM5	t _{d_CLK_TX}	Delay time, output CLK low to TX valid	-	-	78	ns
PCM6	t _{su}	Setup time, RX master mode	78	-	-	ns
PCM7	t _h	Hold time, RX master mode	78	-	-	ns
PCM8	t _{su}	Setup time, RX slave mode	78	-	-	ns

© 2023-2024 MediaTek Inc. All rights reserved.

Page 177 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

No.	Parameter	Description	Min	Тур	Max	Unit
PCM9	t _h	Hold time, RX slave mode	78	-	-	ns

Figure 3-93 PCM Master Mode Timing Diagram

Figure 3-94 PCM Slave Mode Timing Diagram

3.11.4.3 Time Division Multiplexed (TDM) Interface

3.11.4.3.1 TDM Signal Descriptions

Table 3-97 presents TDM signal descriptions.

Signal Name	Туре	Description	Ball Location
TDMIN_BCK	DIO	TDM clock	AD35, W5, T10, N31, G3, H35
TDMIN_DI	DI	TDM receive data input	AD36, V5, T7, N34, G5, H32
TDMIN_LRCK	DIO	TDM word select (left/right audio channel)	V4, T8, P30, E3, G30, AD37
TDMIN_MCK	DIO	TDM receive master clock	T9, N30, G4, G32, AC35, W4

3.11.4.3.2 TDM Timing Characteristics

Table 3-98 and Figure 3-95 present timing characteristics for the TDM interfaces in the device.

Table 3-98 TDM Timing Characteristics

		-				
No.	Parameter	Description Min		Тур	Max	Unit
-	fs	Sampling frequency	8	-	192	kHz
TDM1	f _{мск}	Master clock frequency	0.768	-	49.152	MHz
TDM2	f _{вск}	Serial clock frequency	0.256	-	49.152	MHz
TDM3	t _{w_вск_н}	Pulse duration, BCK high	-	0.5	-	1/f вск
TDM4	t _{w_BCK_L}	Pulse duration, BCK low	-	0.5	-	1/f _{вск}
TDM5	t _{d_BCK_WS}	Delay time, output BCK low to WS valid	-	-	10	ns
TDM6	td_вск_sdout	Delay time, output BCK low to SDOUT valid	-	-	10	ns
TDM7	t _{su_DI}	Setup time, DI	10	-	-	ns
TDM8	th_DI	Hold time, DI	10	-	-	ns

Figure 3-95 TDM Master Mode Timing Diagram

3.11.4.4 Pulse Density Modulation (PDM)

3.11.4.4.1 PDM Timing Characteristics

Table 3-99 and Figure 3-96 present timing characteristics for the PDM interface in the device.

No.	Parameter	Description Min Typ		Max	Unit	
-	f _{clк}	Operating frequency, PDM CLK	0.40625	-	3.25	MHz
PDM2	tw_clk_н	Pulse duration, CLK high	-	0.5	-	1/f _{CLK}
PDM3	tw_clk_l	Pulse duration, CLK low	-	0.5	-	1/f _{CLK}
PDM4	t _{su_dat}	Setup time, DAT	0.2	-	-	1/f _{CLK}
PDM5	t _{H_DAT}	Hold time, DAT	0.2	-	-	1/f _{CLK}

Table 3-99 PDM Timing Characteristics

3.11.4.4.2 Digital Microphone (DMIC)

3.11.4.4.3 DMIC Signal Descriptions

Table 3-100 presents DMIC signal descriptions.

Signal Name	Туре	Description	Ball Location
DMIC1_CLK	DO	DMIC1 clock	AB9, W3, N30
DMIC1_DAT	DI	DMIC1 data in one-wire mode or data left	AC9, W4, N31
DMIC1_DAT_R	DI	DMIC1 data right	AB8, W5, P30
DMIC2_CLK	DO	DMIC2 clock	V4, N34, AC4
DMIC2_DAT	DI	DMIC2 data in one-wire mode or data left	P33, AB3, V5
DMIC2_DAT_R	DI	DMIC2 data right	P35, AA8, W8
DMIC3_CLK	DO	DMIC3 clock	V6, G33, AC8, Y10
DMIC3_DAT	DI	DMIC3 data in one-wire mode or data left	U10, T11, G32, AB7
DMIC3_DAT_R	DI	DMIC3 data right	Y6, V7, H35, AB6
DMIC4_CLK	DO	DMIC4 clock	Y7, V8, H36, AB5
DMIC4_DAT	DI	DMIC4 data in one-wire mode or data left	Y8, U7, J36, AC5
DMIC4_DAT_R	DI	DMIC4 data right	AA5, W7, U8, J37

Table 3-100 DMIC Signal Descriptions

3.11.4.5 Digital Interface (SPDIF)

3.11.4.5.1 SPDIF Signal Descriptions

Table 3-101 presents SPDIF signal descriptions.

Signal Name	Туре	Description	Ball Location
SPDIF_IN0	DI	SPDIF input 0	AD10, W3, D4, G36
SPDIF_IN1	DI	SPDIF input 1	AB2, W7, D2, P33
SPDIF_IN2	DI	SPDIF input 2	D1, P35, AB1, Y8
SPDIF_OUT	DO	SPDIF output	W8, D3, G33, AD11

Table 3-101 SPDIF Signal Descriptions
3.11.4.6 Power Management Integrated Circuit (PMIC)

3.11.4.6.1 PMIC Audio Interface Signal Descriptions

Table 3-102 presents PMIC audio interface signal descriptions.

Table 3-102 PMIC Audio Interf	ace Signal Descriptions
-------------------------------	-------------------------

Signal Name	Туре	Description	Ball Location
AUD_CLK_MOSI ⁽¹⁾	DO	PMIC CODEC clock master output	M33
AUD_DAT_MISO0	DI	PMIC CODEC data master input 0	M30
AUD_DAT_MISO1	DI	PMIC CODEC data master input 1	M32
AUD_DAT_MOSI0	DO	PMIC CODEC data master output 0	M34
AUD_DAT_MOSI1	DO	PMIC CODEC data master output 1	N33
AUD_SYNC_MOSI	DO	PMIC CODEC sync master output	M35

(1) These pins should be left unconnected when unused.

3.12 Connectivity

3.12.1 Inter-Integrated Circuit (I2C) and Improved I2C (I3C)

3.12.1.1 Overview

The I3C/I2C controller is a bi-directional, two-wire serial interface that utilizes Serial Clock Line (SCL) and Serial Data Line (SDA) signals. These signals can be driven by either the master or the slave in both I2C and I3C, with the exception that SCL is only driven by the master in I3C. This generic controller supports the master role and conforms to the I3C/I2C specification.

3.12.1.2 Features

- Start, repeated start and stop conditions generation
- Bus detection
- Acknowledge bit generation and detection
- 7-bit/10-bit addressing
- Clock stretching
- Active drive/wired-and I/O configuration
- I2C four operating speeds:
 - I2C Standard Mode (SM) with speed up to 100 kbit/s
 - I2C Fast Mode (FM) with speed up to 400 kbit/s
 - I2C Fast Mode Plus (FM+) with speed up to 1 Mbit/s
 - I2C High Speed (HS) Mode with speed up to 3.4 Mbit/s
- Adjustable clock speed for SM/FM/FM+/HS mode operation
- I3C 12.5 MHz Single Data Rate (SDR) mode:
 - Dynamic address assignment

© 2023-2024 MediaTek Inc. All rights reserved.

- Private Write/Read transfer
- Broadcast Common Command Code (CCC)
- Directed CCC
- Multi-users
- FIFO mode and DMA mode
- Multiple transfer formats:
 - Multi-write per transfer
 - Multi-read per transfer
 - Multi-transfer per transaction
 - Combined format transfer with length change capability
 - Combined format transfer with direction change capability
 - Multi-transfer with repeated start condition

3.12.1.3 I2C/I3C Signal Descriptions

Table 3-103 presents I2C/I3C signal descriptions.

Table 3-103 I2C/I3C Signal Descriptions

Signal Name	Туре	Description	Ball Location			
13C5						
SCL5	DIO	I3C5 serial clock	F5			
SDA5	DIO	I3C5 serial data	F6			
13C6						
SCL6	DIO	I3C1 serial clock	H7			
SDA6	DIO	I3C1 serial data	G6			
12C0						
SCLO	DIO	I2C0 serial clock	Y4			
SDA0	DIO	I2C0 serial data	W6			
12C1						
SCL1	DIO	I2C1 serial clock	M36			
SDA1	DIO	I2C1 serial data	L36			
12C2						
SCL2	DIO	I2C2 serial clock	Y2			
SDA2	DIO	I2C2 serial data	AA2			
12C3						
SCL3	DIO	I2C3 serial clock	W2			
SDA3	DIO	I2C3 serial data	W1			
12C4						
SCL4	DIO	I2C4 serial clock	K36			
SDA4	DIO	I2C4 serial data	K37			

© 2023-2024 MediaTek Inc. All rights reserved.

3.12.1.4 Block Diagram

Figure 3-97 Block Diagram of I3C/I2C

The I3C/I2C master controller is composed of several sub-modules, including:

- **APB interface**: Facilitates communication with the host side.
- FIFO: 16-byte storage depth
- **apb_reg**: APB register, configuration for other sub-modules.
- Master: Read and write control, state machine, timing control, etc.
- Bus: Monitors the bus behavior and data output.

The data flow direction differs in the following two scenarios:

- When the I3C/I2C master writes data to the slave, the data flow direction is:
 APB interface → FIFO → Master → Bus → Slave
- When the I3C/I2C master reads data from the slave, the data flow direction is:
 Slave → Bus → Master → FIFO → APB interface

3.12.1.5 Function Description

Figure 3-98 shows the wording conventions that are used subsequently.

Master to slave direction	A Acknowledge	nA nonAcknowledge	T T-bit(I3C only)
Slave to master direction	A Acknowledge	nA nonAcknowledge	T T-bit(I3C only)
Direction depends on the CCC	S Start condition	R Repeated Start condition	P Stop condition

Figure 3-98 I2C/I3C Function Description Wording Conventions

3.12.1.5.1 Start, Repeated Start and Stop Conditions

In both I2C and I3C protocols, transactions begin with a Start condition (S) and are terminated by a Stop condition (P).

Transaction	Description
Start condition	When bus is free, a high to low transition on the SDA line while SCL is high.

© 2023-2024 MediaTek Inc. All rights reserved.

Transaction	Description
Repeated Start condition	When bus is busy, a high to low transition on the SDA line while SCL is high.
Stop condition	When bus is busy, a low to high transition on the SDA line while SCL is high.

3.12.1.5.2 Bus Detection

The I2C master is equipped to detect the bus status. Prior to controlling the bus to transfer data, the master initiates a detection process. If the bus is busy, the master waits until a stop condition is detected.

3.12.1.5.3 I2C Clock Stretching

Figure 3-99 I2C Clock Stretching

In certain scenarios, the master may need to communicate with the slave, but the slave may not be ready to receive or send data. This can occur when the internal FIFO of the slave is full or empty. In such cases, after the master pulls SCL low, the slave actively and continuously pulls down the SCL, thus enabling clock stretching.

3.12.1.5.4 I2C Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+)

Figure 3-100 I2C Frame Format in SM/FM/FM+

Figure 3-100 illustrates the basic transfer format utilized by the SM/FM/FM+ of I2C. A more complex transfer format is described in Section 3.12.1.8.

Initially, the master sends a start condition. Following this, the master sends the 7-bit static address of the I2C slave device with which it intends to communicate. Once the slave responds to the addressing, the master sends or receives the data. Upon completion of the data transfer, the master sends a stop condition, and the bus returns to the free state.

3.12.1.5.5 I2C High-Speed (HS) Mode

Figure 3-101 I2C Write Frame Format in HS Mode

Figure 3-101 depicts the differences between the frame formats employed by the I2C HS mode and I2C SM/FM/FM+. Notably, the I2C HS mode introduces a fixed master code (00001XXX) that broadcasts to all slaves supporting the HS mode, allowing them to transition to high speed. The master then sends a repeat start condition signal followed by the same frame format as in SM/FM/FM+.

3.12.1.5.6 I3C Single Data Rate (SDR) Mode

The I3C master supports the I3C Specification v1.0 SDR mode, including:

- Dynamic Address Assignment (DAA) (Section 3.12.1.5.6.1)
- Private write/read (Section 3.12.1.5.6.2)
- Broadcast CCC (Section 3.12.1.5.6.3)
- Direct CCC (Section 3.12.1.5.6.4)

3.12.1.5.6.1 Dynamic Address Assignment (DAA)

Figure 3-102 I3C Dynamic Address Assignment (DAA)

The procedure of DAA is employed to assign dynamic addresses to I3C slaves, as all I3C slaves must have a dynamic address to complete data transfer.

3.12.1.5.6.2 Private Write/Read

	Master Write							
s	I3C Reserved Byte 7'h7E,RnW = 0	А	R	I3C Slave Address	А	DATA	т	Р
	Master Read							
s	I3C Reserved Byte 7'h7E,RnW = 0	A	R	I3C Slave Address	А	DATA	т	Р

Figure 3-103 I3C SDR Private Write/Read

SDR private write/read is a basic communication mode similar to the I2C HS mode with the frame format shown in Figure 3-103, where 7E is the I3C reserved address to indicate that this message is an I3C message.

3.12.1.5.6.3 I	Broad	cast CCC							
	S	I3C Reserved Byte 7'h7E,RnW = 0	А	I3C Broadcast CCC	Т	Da	ata(optional)	Т	Р
			Figu	ure 3-104 I3C SDR Bro	oadca	st CCC			

The I3C master controller supports broadcast CCC (command codes 0x00 to 0x7F) to write to all I3C slaves on the I3C bus.

3.12.1.5.6.4 Direct CCC

S	I3C Reserved Byte 7'h7E,RnW = 0	А	I3C Directed CCC	Т	
 !					·
└ → R	I3C Slave Address	А	Data	т	Р

Figure 3-105 I3C SDR direct CCC

The master controller supports direct CCC (command codes 0x80 to 0xFE) to the specific I3C slave on the I3C Bus.

3.12.1.6 Interrupts

Interrupt Type	Interrupt Enable Bit	Interrupt Identification	Interrupt Factors
Transmit	MAS_TRANSAC_COMP	TRANSAC_COMP	After transmission is completed, the interrupt will be generated.
Communication Error	MAS_ACKERR	ACKERR	When the slave sends no ack, the interrupt will be generated.
Communication Error	MAS_HS_NACKERR	HS_NACKERR	This status is asserted if HS master code NACK (Negative Ack.) error detection is enabled.
Enhancement Feature	MAS_ARB_LOST	ARB_LOST	When the I2C controller loses arbitration, the interrupt is generated.

Table 3-104 I3C/I2C Interrupt Control Bits and Interrupt Factors

Interrupt Type	Interrupt Enable Bit	Interrupt Identification	Interrupt Factors
Enhancement Feature	MAS_RS_MULTIPLE	RS_MULTIPLE	In multiple read/write with rs_stop transfer mode, this status is asserted when a transfer has completed successfully.
Enhancement Feature	MAS_TIMEOUT	TIMEOUT	This status is asserted if the I2C bus time- out occurs.
Enhancement Feature	MAS_DMA_ERR	DMA_ERR	This status is asserted if the DMA hand- shake error has occurred.

3.12.1.7 Theory of Operations

3.12.1.7.1 Multi-User

Figure 3-106 Multi-user of I3C/I2C

The I3C/I2C master supports the multi-user function, enabling multiple hosts (including CCU (Camera Control Unit), AP, SCP, etc.) to poll to control the I3C/I2C master, as illustrated in Figure 3-106. In case of using AP/SCP multi-user, it is advised to use the FIFO mode on the non-XPU side. Moreover, if the AP multi-user is employed, the IRQ of the AP's I3C/I2C channel 2 can only be sent to the AP and CCU, and not to the SCP.

3.12.1.7.2 FIFO Mode

The I3C/I2C master controller offers a FIFO mode. Along with the slave address register, the controller integrates a 16-byte deep FIFO. This feature enables the AP to prepare up to 16 bytes of data for a write transfer or read up to 16 bytes of data for a read transfer.

3.12.1.7.3 DMA Mode

The AP_DMA facilitates communication between the I2C master controller and the system. To enable efficient data transfer, configuration of the DMA settings is necessary in advance. These settings include the target memory address and the TX/RX transfer direction and transfer length, in addition to the slave address register.

3.12.1.8 Supported Transfer Formats

The I3C/I2C master controller is designed to be generic to support a wide range of devices that may utilize different combinations of transfer formats. The supported formats and examples are described in the following sections.

Wording conventions:

Word	Description			
Transfer	Anything encapsulated within a START and STOP or repeated START.			
Transfer length	Number of bytes within the transfer (TRANSFER_LEN (I2Cn Base address +			
	0x14)/TRANSFER_LEN_AUX (I2Cn Base address + 0x6C)).			
Transaction The top unit. Everything combined equals 1 transaction.				
Transaction length	Number of transfers to be conducted (TRANSAC_LEN (I2Cn Base address + 0x18)).			

3.12.1.8.1 Single-Byte Access

The I2C master writes 1-byte data to the I2C slave or reads 1-byte data from it. The I3C master is compatible with this transfer format.

Figure 3-107 I2C/I3C Single-Byte Access

3.12.1.8.2 Multi-Byte Access

The I2C master writes N-byte data to the I2C slave or reads N-byte data from it. The I3C master is compatible with this transfer format.

- DIR_CHANGE(I2Cn Base address + 0x10)[4] = 0
- TRANSAC_LEN(I2Cn Base address + 0x18) = 1
- TRANSFER_LEN (I2Cn Base address + 0x14) = N (N \ge 1)

Figure 3-108 I2C/I3C Single-Byte Access

3.12.1.8.3 Combined Write/Read with Repeated START (Direction Changed)

The I2C master first writes N-byte data to the I2C slave. After a repeated START condition, the I2C master reads M-byte data from the I2C slave. The I3C master is compatible with this transfer format. Note that only the "read after write sequence" is supported; the "write after read sequence" is not supported.

- DIR_CHANGE(I2Cn Base address + 0x10)[4] = 1
- TRANSAC_LEN(I2Cn Base address + 0x18) = 2
- TRANSFER_LEN(I2Cn Base address + 0x14) = N (N \ge 1)
- TRANSFER_LEN_AUX(I2Cn Base address + 0x6C) = M (M ≥ 1)
- RS_STOP(I2Cn Base address + 0x10)[1] = 1

3.12.1.8.4 Transfer Length Change after First Transfer Completion (No Direction Changed)

Under the condition of changing the transfer length without changing the transfer direction in the write/read mode, the I2C master first writes N-byte data to the I2C slave. After a repeated START condition, the I2C master writes/reads M-byte data to the I2C slave. The I3C master is compatible with this transfer format.

- DIR_CHANGE(I2Cn Base address + 0x10)[4] = 0
- TRANSFER_LEN_CHANGE(I2Cn Base address + 0x10)[6] = 1
- TRANSAC_LEN(I2Cn Base address + 0x18) = 2
- TRANSFER_LEN(I2Cn Base address + 0x14) = N (N ≥ 1)
- TRANSFER_LEN_AUX(I2Cn Base address + 0x6C) = M (M ≥ 1)
- RS_STOP(I2Cn Base address + 0x10)[1] = 1

Figure 3-110 Change Transfer Length in Write/Read Mode (No Direction Change)

3.12.1.8.5 Repeated START for Multiple Transfers

When the I2C master performs X transfers, between each two transfers, it is in the pause state and issues an interrupt. At this time, software can change the length, slave address and direction of the next transfer and then restart the transfer. The I3C master is compatible with this transfer format. Note that this function is only supported in the FIFO mode.

- TRANSAC_LEN(I2Cn Base address + 0x18) = X (X \ge 1)
- TRANSFER_LEN(I2Cn Base address + 0x14) = N (N ≥ 1)
- RS_STOP(I2Cn Base address + 0x10)[1] = 1
- RS_STOP_MULTIPLE_CONFIG(I2Cn Base address + 0x24)[15] = 1
- RS_STOP_MULTIPLE_CONFIG(I2Cn Base address + 0x24)[15] = 0 before last transfer

Figure 3-111 Repeated START Multiple Transfers (Write/Read Mode)

3.12.1.9 AC Timing

Table 3-105, Figure 3-112, Table 3-106, and Figure 3-113 present timing characteristics for the I2C interfaces in in SS/FS/FS+ modes.

Symbol	Parameter	Standard	d-mode	Fast-mod	Fast-mode		Plus	Unit	Remark
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Remark
fSCL	Serial Clock Line (SCL) clock frequency	0	100	0	400	0	1000	kHz	-
tHD;STA	Hold time (repeated) START condition	4.0	-	0.6	-	0.26	-	μs	-
tLOW	LOW period of the SCL clock	4.7	-	1.3	-	0.5	-	μs	-
tHIGH	HIGH period of the SCL clock	4.0	-	0.6	-	0.26	-	μs	-
tSU;STA	Set-up time for a repeated START condition	4.7	-	0.6	-	0.26	-	μs	-

Table 3-105 I2C AC Timing Parameters for Standard, Fast, and Fast-mode Plus

Symbol	Parameter	Standard	d-mode	Fast-mod	le	Fast-mode	Plus	Unit	Remark	
Symbol	Falameter	Min	Max	Min	Max	Min	Max	Unit	heman	
tHD;DAT	Data hold time	5.0	-	0	-	0	-	μs	I2C-bus devices	
tSU;DAT	Data set-up time	250	-	100	-	50	-	ns	-	
tr	Rise time of both SDA and SCL signals	-	1000	20	300	-	120	ns	-	
tf	Fall time of both SDA and SCL signals	-	300	20x (VDD/5.5V)	300	20x (VDD/5.5V)	120	ns	VDD is I2C IO voltage	
tSU;STO	Set-up time for STOP condition	4.0	-	0.6	-	0.26	-	ns	-	
tVD;DAT	Data valid time	-	3.45	-	0.9	-	0.45	μs	-	
tVD;ACK	Data valid acknowledge time	-	3.45	-	0.9	-	0.45	μs	-	

Figure 3-112 I2C AC Timing Diagram of F/S Mode

Symbol	Parameter	Cb = 100	pF (max)	Cb = 4	00 pF	Unit	Note	
Symbol	Parameter	Min	Max	Min	Max	Unit	Note	
fSCL	SCL clock frequency	0	3.4	0	1.7	MHz	-	
tSU;STA	Set-up time (repeated) START condition	160	-	160	-	ns	-	
tHD;STA	Hold time (repeated) START condition	160	-	160	-	ns	-	
tLOW	LOW period of the SCL clock	160	-	320	-	ns	-	
tHIGH	HIGH period of the SCL clock	60	-	120	-	ns	-	
tHD;DAT	Data hold time	0	70	0	150	ns	I2C-bus devices	
tSU;DAT	Data set-up time	10	-	10	-	ns	-	

© 2023-2024 MediaTek Inc. All rights reserved.

Symbol	Parameter	Cb = 100	pF (max)	Cb = 4	00 pF	Unit	Note
Symbol	Parameter	Min	Max	Min	Max	Unit	Note
tr	Rise time of SCLH signal	10	40	20	80	ns	-
tf	Fall time of SCLH signal	10	40	20	80	ns	
tSU;STO	Set-up time for STOP condition	160	-	160	-	ns	-

Figure 3-113 I2C AC Timing Diagram of HS Mode

For the I3C AC timing of the SDR mode, please refer to the MIPI I3C specification.

3.12.1.10 Programming Guide

Figure 3-114 Programming Flow of I3C/I2C

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited. Figure 3-114 shows the programming workflow of the I3C/I2C master. To initiate transmission of register data to the master, the AP must first clear the interrupt and then configure the frequency division factor of the SCL to correspond to the low and high speeds (for the I2C HS mode or the I3C SDR mode). Then, the AP configures relevant registers for transmission such as the slave address, transfer length, and transaction length. The transmission is then triggered by the Start register. Upon completion of the transfer or in the event of an error, an interrupt is generated, which should be cleared after the transmission is completed correctly or an error occurs.

3.12.2 Universal Asynchronous Receiver/Transmitter (UART)

3.12.2.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) is a full duplex serial communication channel between the chip and external devices. It is designed to be compatible with a range of standard software drivers and offer M16C450 and M16550A modes.

The UART supports word lengths from 5 to 8 bits, an optional parity bit, and one or two stop bits, all of which are fully programmable via the CPU interface. Additionally, the UART includes:

- A 16-bit programmable baud rate generator
- An 8-bit scratch register
- Modem CTS (Clear to Send) and RTS (Request to Send) control lines
- A diagnostic loopback mode

Furthermore, the UART is equipped with two Direct Memory Access (DMA) handshake lines for indicating when the FIFOs are ready to transfer data to the CPU and can generate interrupts from any of these sources.

After the hardware reset, the UART is in the M16C450 mode; however, it can be enabled to enter the M16550A mode, which adds more advanced functions. These extensions are individually selectable via software control.

3.12.2.2 Features

- Provides 4 channels of UARTs
- UART1 and UART2 are 4-pin (TX, RX, CTS, RTS), while UART0 and UART3 are 2-pin channels (TX and RX) UART channels.
- Supports both M16C450 and M16550A operation modes
- Compatible with standard software drivers
- Transfer system: Asynchronous
- Data length: 5 to 8 bits
- Stop bits: 1 or 2
- Programmable parity (even, odd, and no parity)
- Hardware flow control: CTS/RTS-based automatic transmission and reception control
- Software flow control: Uses special characters, XON and XOFF for software flow control
- Baud rate programmable up to 3 Mbps
- Baud rate error: Less than 0.25%
- Baud rate accuracy compensation

© 2023-2024 MediaTek Inc. All rights reserved.

- Interrupt request: Receive interrupts/transmit interrupts
- Maskable interrupts
- Two independent 32-depth FIFOs for transmit and receive
- Data transfer: Supports DMA (Transmit/Receive) transfer
- Escape character sequence detection

3.12.2.3 Block Diagram

Figure 3-115 Block Diagram of UART

The figure above depicts the block diagram of UART, which consists of

- First In First Out (FIFO)
- Finite State Machine (FSM)
- Advanced Peripheral Bus (APB) interface
- Modem control

The UART supports full-duplex serial communication through its TX and RX channels, each of which contains an FSM (TX FSM or RX FSM) and a 32-byte FIFO (TX FIFO or RX FIFO). The FSM indicates the current transfer stage of the TX or RX channel, while the FIFOs store the data to be sent or received. The APB interface allows the system to:

- Access the configuration and status registers of UART
- Read the received data or write the data to be sent

The modem control enables the UART to support the hardware flow control.

3.12.2.4 Function Description

- 3.12.2.4.1 Signals
- 3.12.2.4.1.1 External Signals

Signal Name	Туре	Description	Ball Location
UART0			
URXD0	DI	UARTO receive data	U3
UTXD0	DO	UARTO transmit data	U2
UART1			·
URXD1	DI	UART1 receive data	U10, G3, V2, R33, AC6
UTXD1	DO	UART1 transmit data	Y10, G4, V1, R34, AA6
UCTS1	DI	UART1 clear to send (active low)	Y7, G5, U5, P31, AD10
URTS1	DO	UART1 request to send (active low)	Y6, E3, U4, T33, AD11
UART2			
URXD2	DI	UART2 receive data	U5, G1, P31, AB5
UTXD2	DO	UART2 transmit data	U4, G2, T33, AB6
UCTS2	DI	UART2 clear to send (active low)	V2, E2, R33, AA5
URTS2	DO	UART2 request to send (active low)	V1, F2, R34, AC5
UART3			
URXD3	DI	UART3 receive data	AA35, U8, R30, H32, AB1
UTXD3	DO	UART3 transmit data	AB32, U7, P32, G30, AB2

Table 3-107 External Signals Descriptions

3.12.2.4.1.2 Internal Signals

3.12.2.4.1.3 Clock

The UART has two clock input ports: Peripheral Clock (PCLK) and Baud Clock (BCLK).

- The **PCLK** is the APB clock with its frequency determined by the APB.
- The **BCLK** is the UART function clock with two levels of clock sources available for the UART to select the adapted clock frequency, allowing flexible implementation of multiple UARTs.

3.12.2.4.1.4 Reset

The UART features one asynchronous reset input port, which can be triggered by the hardware reset, power reset, or software reset bit, which can reset the initial values of all UART registers, FIFOs, and state machines.

3.12.2.4.1.5 Advanced Peripheral Bus (APB)

The UART is connected to the APB as an APB slave, allowing all UART registers to be programmed or read via the APB.

- Data transmitted to the outside via the TX FIFO can be written by the APB.
- Data received from the outside can be read from the APB via the RX FIFO.

3.12.2.4.1.6 Direct Memory Access (DMA)

	Table 3-108 DMA Signal Descriptions								
Signal Name	Signal Type	Description							
tx_dmareq	Output	TX DMA request signal to DMA for transmission data.							
tx_dmaack	Input	TX DMA acknowledge from DMA for transmission data							
rx_dmareq	Output	RX DMA request signal to DMA for received data.							
rx dmaack	Input	RX DMA acknowledge from DMA for received data							

3.12.2.4.1.7 Interrupt

When there is an output interrupt request, poll the UART interrupt identification register for more information about the interrupt, as described in Section 3.12.2.4.4.

3.12.2.4.2 Communication Protocol

- The 1-bit start bit must be low.
- The data bit length is 5 to 8 bits.
- The parity check can be odd or even.
- The stop bit is 1 to 2 bit(s) long and must be high.

Figure 3-116 UART Communication Protocol

3.12.2.4.3 Clock Requirement

This section describes the clocks and special clocking requirements of the UART. For the definitions of PCLK and BCLK, please refer to Section 3.12.2.4.1.3.

- The **PCLK** is primarily used for programing registers and also plays the roles below. The PCLK must be always running when the UART is in use.
 - The write clock of a TX FIFO
 - The read clock of an RX FIFO

- Synchronization of FIFO.
- The **BCLK** is used for all state machines, writing RX FIFOs, and reading TX FIFOs. The BCLK must always be running when the UART is in use. To ensure a fixed baud rate when transmitting or receiving data, the BCLK must be kept in one clock source.

Note that for the 16x oversampling of input characters, the BCLK frequency is preferably greater than or equal to 16x the request baud rate. There is no special requirement for the PCLK.

3.12.2.4.4 Interrupt Definition

The UART generates several types of interrupts, as detailed in Table 3-109 and Table 3-110.

Table 3-109 UART Interrupt Control Bits and Interrupt Factors

UARTn	⊦0004h		Interr	nterrupt Enable Register								UARTn_IER				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									CTSI	RTSI	XOFFI		EDSSI	ELSI	ETBEI	ERBFI
Туре									R/W					•	•	
Reset									0							

IER[3:0] are modified when LCR[7] = 0.

IER[7:4] are modified when LCR[7] = 0&EFR[4] = 1.

UARTn-	+0008h		Interru	terrupt Identification Register								UARTn_IIR				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									FIFOE		ID4	ID3	ID2	ID1	ID0	NINT
Туре									RO							
Reset									0	0	0	0	0	0	0	1

ID4 and ID3 are presented only when EFR[4] = 1.

Table 3-110 UART Interrupt Types

Interrupt Type	Interrupt Request Bit (UARTn_IER)	Interrupt Identification (UARTn_IIR)	Interrupt Factor	Notes
Received	ERBFI	IIR[5:0] = 000100b	The RX buffer contains data.	-
Received	-	IIR[5:0] = 001100b	Timeout on the character in the RX FIFO	-
Transmit	ETBEI	IIR[5:0] = 000010b	The TX holding register is empty, or the contents of the TX FIFO have been reduced to the trigger level.	-
Communication Error	ommunication Error ELSI		If a frame error, parity error, break interrupt, or	For the detailed interrupt status, refer to LSR[4:1].

© 2023-2024 MediaTek Inc. All rights reserved.

Interrupt Type	Interrupt Request Bit (UARTn_IER)	Interrupt Identification (UARTn_IIR)	Interrupt Factor	Notes
			FIFO overrun happens,	
			the interrupt occurs.	
				For the detailed
Modem	EDSSI	IIR[5:0] = 000000b	Modem status change	interrupt status,
				refer to MSR[4:1].
			If a rising edge is	
	CTSI	IIR[5:0] = 100000b	detected on the CTS, the	
			interrupt occurs.	Available when
Enhancement			If a rising edge is	the enhanced
Feature	RTSI	IIR[5:0] = 100000b	detected on the RTS, the	feature is
			interrupt occurs.	enabled.
			When an XOFF character	(EFR[4] = 1)
	XOFF1	IIR[5:0] = 010000b	is received, the interrupt	
			occurs.	

3.12.2.4.5 Enhancement Features

The UART provides more enhanced features than the industry-standard 16550. This includes **hardware flow control**, **software flow control**, and the **escape** function.

3.12.2.4.5.1 Hardware Flow Control

The hardware flow control uses two dedicated signals, Clear to Send (CTS) and Request to Send (RTS) signals, to indicate whether the UART is ready to receive data or send data.

This feature is highly advantageous in embedded applications where the Interrupt Service Routine (ISR) latency is difficult to predict and control. The MCU is relieved from the requirement of fetching the received data within a fixed amount of time.

Signal	Status	Description
CTS	Low	The UART can start to transmit data.
CTS	Active	The UART is not allowed to transmit data.
RTS	Low	The UART FIFO in the received circuit is sufficient to receive data.
RTS	High	The UART is not allowed to receive data.

Table 3-111 CTS and RTS Signals Behaviors

3.12.2.4.5.2 Software Flow Control

The **software flow control** uses special programmable characters, XON and XOFF, to handle the flow of data. When XOFF is received, the UART transmission is halted and does not resume until XON is received.

Note:

- To enable any of the enhancement features, the enhanced mode bit EFR[4] must be set. If it is not set, IER[7:5], FCR[5:4], and MCR[7:6] cannot be written, ensuring the UART is backward compatible with software written for 16C450 and 16550A devices.
- When the oversampling ratio between the UART clock and baud rate is less than 8, it is necessary to enable the guard time function of the UART TX device to ensure the MediaTek UART RX works properly. Otherwise, frame errors could occur and the received data could get corrupted.

3.12.2.4.5.3 Escape Function

The **Escape** function can be enabled by configuring ESCAPE_EN and ESCAPE_DAT for the software flow control. The normal character sent in the TX FIFO is escaped to its inverse code if it matches XON/XOFF/ESCAPE_DAT and the transmit state machine sends ESCAPE_DAT before the inverse code. When the receive state machine receives the ESCAPE_DAT character, it abandons the character and escapes the next character to its inverse code before saving it to the RX FIFO.

3.12.2.5 Theory of Operations

3.12.2.5.1 Register Remap

Table 3-112 UART Register Map

Address	Name	Description
UART_BASE+0x0C	LCR	Line Control Register (LCR)
UART_BASE+0x24	HIGHSPEED	HIGH SPEED UART
UART_BASE+0x28	SAMPLE_COUNT	SAMPLE_COUNT
UART_BASE+0x2C	SAMPLE_POINT	SAMPLE_POINT
UART_BASE+0x34	RATEFIX_AD	Rate Fix Address
UART_BASE+0x3C	GUARD	Guard Time Added Register
UART_BASE+0x40	ESCAPE_DAT	Escape Character register
UART_BASE+0x44	ESCAPE_EN	Escape Enable Register
UART_BASE+0x48	SLEEP_EN	Sleep Enable Register
UART_BASE+0x4C	DMA_EN	DMA Enable Register
UART_BASE+0x50	RXTRI_AD	RX Trigger Address
UART_BASE+0x54	FRACDIV_L	Fractional Divider LSB Address
UART_BASE+0x58	FRACDIV_M	Fractional Divider MSB Address
UART_BASE+0x5C	FCR_RD	FIFO Control Register
UART_BASE+0x88	RTO_CFG	Rx Time Out Configuration Register
UART_BASE+0XB4	SLEEP_REQ	UART Sleep Request Register
UART_BASE+0xB8	SLEEP_ACK	UART Sleep Acknowledge Register

Table 3-113 UART Register Remap

Address	Name	Description	Name	Description
	Conditi	on: LCR[7] == 0	Conditio	n: LCR[7] == 1
UART_BASE+0x00	THR	TX Holding Register/	DLL	Divisor Latch (LS)
	RBR	RX Buffer Register		

© 2023-2024 MediaTek Inc. All rights reserved.

Address	Name	Description	Name	Description
UART_BASE+0x04	IER	Interrupt Enable	DLM	Divisor Latch (MS)
		Register		
	Conditi	on: LCR != 0xBF	Conditio	n: LCR == 0xBF
UART_BASE+0x08	FCR	FIFO Control Register/	EFR	Enhanced Feature
	IIR	Interrupt Identification		Register
		Register		
UART_BASE+0x10	MCR	Modem Control	XON1	XON1
		Register		
UART_BASE+0x14	LSR	Line Status Register	XON2	XON2
UART_BASE+0x18	MSR	Modem Status Register	XOFF1	XOFF1
UART_BASE+0x1C	SCR	Scratch Register	XOFF2	XOFF2

3.12.2.5.2 Baud Rate Generation

The DLL (Divisor Latch LS (Least Significant Bit)) and DLM (Divisor Latch MS (Most Significant Bit)) act as clock dividers to obtain the required baud rate based on the BCLK frequency.

UARTn	+0000	h	Diviso	or Latcł	ו (LS)									UARTn	_DLL			
Bit	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1									
Name									DLL[DLL[7:0]								
Туре									R/W	R/W								
Reset									1									

UARTn	+0004h	1	Divisor	Latch (MS)								U	ARTn_D	LM	
Bit	15	14	13	12	11	10	9	8	7	4	3	2	1	0		
Name									DLM[7:0]							
Туре									R/W							
Reset									0							

Note:

• The DLL and DLM can only be updated if LCR[7] is set ("1"). Note that the division by 1 generates a BAUD signal that is constantly high. The example below shows the divider that needs to generate a given baud rate from the clock inputs of 26 MHz.

When clock source = 26 MHz and baud rate = 4800 bps
If HIGHSPEED (0x24) = 0: 26 MHz/4800/16 ~= 339 = 0x153 → DLM: 0x01, DLL: 0x53
If HIGHSPEED (0x24) = 1: 26 MHz/4800/8 ~= 677 = 0x2A3 → DLM: 0x02, DLL: 0xA3
If HIGHSPEED (0x24) = 2: 26 MHz/4800/4 ~= 1354 = 0x54A → DLM: 0x05, DLL: 0x4A
If HIGHSPEED (0x24) = 3: 26 MHz/4800/256 + 1 ~= 22 = 0x16 → DLM: 0x00, DLL: 0x16

UARTn	+0024h	1	HIGH S	PEED U	ART							UAR	[n_HIGI	HSPEED		
Bit	15	14	13													
Name															SPEED [1:0]	

© 2023-2024 MediaTek Inc. All rights reserved.

Туре								R/W
Reset								0

Note:

SPEED UART sample counter base

0: Based on 16*baud_pulse, baud_rate = system clock frequency/16/{DLM, DLL}

1: Based on 8*baud_pulse, baud_rate = system clock frequency/8/{DLM, DLL}

2: Based on 4*baud_pulse, baud_rate = system clock frequency/4/{DLM, DLL}

3: Based on sample_count * baud_pulse, baud_rate = system clock frequency/(sample_count+1)/{DLM, DLL}

UARTn	+0028ł	า	SAMPL	E_COU	NT							UARTn	_SAMP	LE_CO	UNT		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name									SAMPLECOUNT [7:0]								
Туре									R/W								
Reset									0								

Note:

When HIGHSPEED = 3, the sample_count is the threshold value for the UART sample counter (sample_num).

Sample Count = clock source/baud rate/{DLM. DLL} - 1

For example, clock source: 26 MHz, baud rate: 4800 bps; DLM: 0x00, DLL: 0x16

If High Speed (0x24) = 0, 1 or 2: Unnecessary to set SAMPLE_COUNT

If High Speed (0x24) = 3: 26 MHz/4800/0x16 - 1 ~= 245 → SAMPLE_COUNT = 245

UARTn	+002Cl	า	SAMPL	E_POIN	IT							UARTn	_SAMP	LE_POII	NТ		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name									SAMPLEPOINT [7:0]								
Туре									R/W								
Reset									8'hff								

Note:

If HIGHSPEED = 3, UART gets the input data when sample_count = sample_num.

The SAMPLE_POINT is usually ROUNDDOWN ((SAMPLE_COUNT+1)/2 - 1).

For example, if the clock source = 26 MHz, the baud rate = 4800 bps,

DLL: 0x00, and DLL: 0x16&SAMPLE_COUNT = 245

SAMPLE_POINT = ROUNDDOWN ((245+1)/2 - 1) = 122 (sample the central point to decrease inaccuracy)

3.12.2.5.3 Accuracy Compensation

FRACDIV_L and FRACDIV_M act as baud rate accuracy compensation factors to reduce baud rate errors.

UARTn	+0054ł	า	Fractio	nal Divi	der LSB	Addres	SS					UARTn	_FRACE	VIV_L			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name									FRACDIV_L								
Туре									R/W								
Reset									0	0	0	0	0	0	0	0	

Note:

• FRACDIV_L: Add sampling count (+1) from state data7 to state data0 in order to improve fractional divisor.

UARTn	+0058ł	ı	Fractio	nal Divi	der MS	B Addre	ess				UARTn	_FRACE	N_VI			
Bit	15	14	13	12	11	10	9	5	4	3	2	1	0			
Name														FRACDIV_M		
Туре														R/W		
Reset														0	0	

Note:

- FRACDIV_M: Add sampling count in the stop state and the parity state to improve the fractional dividers.
- FRACDIV_L/FRACDIV_M: Add one sampling period to each symbol to increase baud rate accuracy.

bit_extend register = FRACDIV_L[7:0] FRACDIV_M[1:0]

Start	d0	d1	d2	d3	d4	d5	d6	d7	Parity	Stop
n	n+L[0]	n+L[1] ►	n+L[2] ►	n+L[3]	n+L[4] ►	n+L[5]	n+L[6]	n+L[7] ►	n+M[0] ►	n+M[1] ►
<u>_m</u>										

Bit extend number = ROUND ((clock source/baud rate/{DLM. DLL} – (SAMPLE_COUNT + 1))*10)

For example, if the clock source = 26 MHz, the baud rate = 4800 bps;

DLM: 0x00, DLL: 0x16, and SAMPLE_COUNT = 245.

Bit extend number = ROUND ((26 MHz/4800/0x16 - (245+1))*10) = 2

Therefore, it should compensate for 2 bits of one frame (e.g. $FRACDIV_L = 0x44$, $FRACDIV_M = 0x00$). Refer to Table 3-114 for more details.

Table 3-114 Bit Extension Number Reference

Bit Extension Number	FRACDIV_M	FRACDIV_L
0	0x00	0x00
1	0x00	0x10
2	0x00	0x44
3	0x00	0x92
4	0x01	0x29
5	0x01	Охаа
6	0x01	0xb6
7	0x01	0xdb
8	0x01	0xef
9	0x01	0xff
10	0x03	0xff

3.12.2.5.4 Data Transmission

See Table 3-115 for details of the data transmission mechanism.

The software can write transmitted data into the THR by asserting transmit interrupt (IIR[5:0] = 000010b) or polling the THRE bit status as "1" directly. When FIFOs are enabled, the transmitted data can be written into the THR. The data is transferred to the TX FIFO directly.

Table 3-115 Data Transmission Mechanism

FIFIO Status	Condition	Result
	THR empty	THRE bit of LSR is 1.
FIFO disabled	THR empty	Transmitted data can be written in THR.
	THR not empty	TX starts to transmit automatically.
	TX FIFO reduced to trigger level	THRE bit of LSR is 1.
FIFO enabled	TX FIFO reduced to trigger level	Transmitted data can be written in THR.
	TX FIFO not empty	TX starts to transmit automatically.

3.12.2.5.5 Data Reception

- When the RX Buffer is almost full or a byte is being transferred into the RX FIFO, the DR bit of the LSR is "1" and the received data can be read by the RX Buffer Register (RBR).
- The software can read the received data either by responding to a received interrupt (IIR[5:0] = 000100b), or by polling the DR bit status directly. If FIFOs are enabled, the received data in the RX FIFO can be read by reading RBR.

3.12.2.6 Power Management

Every UART has its own clock gating to save power. Enabling clock gating can turn off the clock once the transfer is complete with the UART. Furthermore, the UART BCLK and PCLK share the same clock gating bit.

In special scenarios where the system needs to enter the sleep mode while the UART is either transmitting or receiving characters, the UART hardware provides *sleep_req* and *sleep_ack* mechanisms to avoid conflicts. Set *sleep_req* and then poll *sleep_ack* until its status becomes "1", which indicates that the UART has entered an idle status (TX idle and RX idle).

- TX idle: The TX state machine enters an idle status.
- RX idle: The RX state machine enters an idle status and the RX data line remains idle (high) for the duration of five-bit baud.

3.12.2.7 Electrical Specifications

Table 3-116 UART Electrical Specifications

Symbol	Description	Min	Max	Unit
TX_ERR ⁽¹⁾	TX baud rate error rate (3000000, 2000000, 1000000, 921600, 460800, 230400, 115200, 76800, 57600, 38400, 28800, 19200, 9600)	-0.25	0.25	%
RX_ERR ⁽²⁾	Acceptable error rate on RX baud rate	-1.5	1.5	%

© 2023-2024 MediaTek Inc. All rights reserved.

Symbol	Description	Min	Max	Unit
	(3000000, 2000000, 1000000, 921600, 460800, 230400, 115200, 76800,			
	57600, 38400, 28800, 19200, 9600)			

(1) TX_ERR (%): The percentage of ((real TX output baud rate – target baud rate)/target baud rate).

(2) RX_ERR (%): The acceptable error rate on the RX, i.e. the percentage of ((real RX acceptable baud rate – target baud rate)/target baud rate).

The figure below depicts the specific UART baud rate waveform.

Figure 3-117 UART Timing Diagram

3.12.2.8 Programming Guide

3.12.2.9 Baud Rate Setting and UART Initialization

The table below suggests the UART baud rate setting from a clock input of 30 MHz.

Baud Rate	HIGHSPEED	{DLM, DLL}	SAMPLE_COUNT	SAMPLE_POINT	FRACDIV_M	FRACDIV_L
3,000,000	3	0x00, 0x01	0x09	0x04	0x0	0x0
2,000,000	3	0x00, 0x01	0x0E	0x06	0x0	0x0
1,000,000	3	0x00, 0x01	0x1D	0x0E	0x0	0x0
500,000	3	0x00, 0x01	0x3B	0x1D	0x0	0x0
250,000	3	0x00, 0x01	0x77	0x3B	0x0	0x0
153,600	3	0x00, 0x01	0xC2	0x60	0x0	0x92
115,200	3	0x00, 0x02	0x81	0x40	0x0	0x44
76,800	3	0x00, 0x02	0xC2	0x60	0x0	0x92
57,600	3	0x00, 0x03	0xAC	0x55	0x1	0xB6
38,400	3	0x00, 0x04	0xC2	0x60	0x0	0x92
28,800	3	0x00, 0x05	0xCF	0x67	0x0	0x92
19,200	3	0x00, 0x07	0xDE	0x6E	0x0	0x44
9,600	3	0x00, 0x0D	OxEF	0x77	0x1	0x92
7,200	3	0x00, 0x11	0xF4	0x79	0x1	0x01
4,800	3	0x00, 0x19	0xF9	0x7C	0x0	0x0

Use the registers below to set the baud rate.

- DLL
- DLM
- HIGHSPEED
- SAMPLE_COUNT

MEDIATEK

- SAMPLE_POINT
- FRACDIV_M
- FRACDIV_L

Once the baud rate is set, the UART is able to start transmitting data by filling the TX FIFO and receiving data from the RX FIFO. See Table 3-118 for an example of how to set the baud rate to 115,200 bps using a clock input of 30 MHz.

Description	Related Register Setting			
Select UART sample counter base to SPEED 3.	HIGHSPEED = 0x3			
	SAMPLE_COUNT = 0x81			
Sat sample counter	SAMPLE_POINT = 0x40			
Set sample counter.	FRACDIV_L = 0x44			
	FRACDIV_M = 0x0			
Switch register to the divisor mode (Register MAP condition 2) to				
execute the divisor latch setting.	LCR = 0x80			
UARTn_LCR[7] = 1				
Sat the divisor latch	DLL = 0x2			
	DLM = 0x0			
Set the guard time.	GUARD			
Switch the register to the normal mode (Register MAP condition 1).	LCR = 0x00			
$UARTn_LCR[7] = 0$	LCN - 0200			
	Select UART sample counter base to SPEED 3. Set sample counter. Switch register to the divisor mode (Register MAP condition 2) to execute the divisor latch setting. UARTn_LCR[7] = 1 Set the divisor latch. Set the guard time. Switch the register to the normal mode (Register MAP condition 1).			

Table 3-118 UART Baud Rate Setting Example

Table 3-119 UART Hardware Initialization

Step	Description	Related Register Setting
1	Set the baud rate (refer to Table 3-118).	-
2	Enable the enhanced features. (The register is accessible only when LCR = 0xBF.)	LCR = 0xBF EFR = 0x10 LCR = 0x00
3	Enable the FIFO control.	FCR
4	Set word length (LCR[1:0]), parity (LCR[5:4]) and STOP (LCR[2]) bits.	LCR
5	Enable interrupts.	IER

The suggested software programming sequence is as follows:

DRV WriteReg32(UART BASE+0x24, 0x0000003); //High-speed UART 1 2 DRV WriteReg32(UART BASE+0x28, 0x0000081); //sample count

DRV WriteReg32(UART BASE+0x2C, 0x00000040); //sample_point 3

DRV WriteReg32(UART BASE+0x4C, 0x0000001); //Enable RX DMA 4

5

DRV WriteReg32(UART BASE+0x54, 0x00000044); //FRACDIV L

© 2023-2024 MediaTek Inc. All rights reserved.

6	DRV_WriteReg32(UART_BASE+0x58,	0x0000000);	//FRACDIV_M
7	DRV_WriteReg32(UART_BASE+0x0C,	0x00000BF);	//LCR==0xBF, change to Condition 2
8	DRV_WriteReg32(UART_BASE+0x00,	0x0000002);	//DLL, LS
9	DRV_WriteReg32(UART_BASE+0x04,	0x0000000);	//DLM, MS
10	DRV_WriteReg32(UART_BASE+0x08,	0x0000010);	//Enable enhancement features
11	DRV_WriteReg32(UART_BASE+0x0C,	0x0000000);	//LCR !=0xBF, change to Condition 1
12	DRV_WriteReg32(UART_BASE+0x08,	0x0000031);	//FIFO trigger threshold and enable FIFO
13	DRV_WriteReg32(UART_BASE+0x0C,	0x0000003);	//8-bit word length
14	DRV_WriteReg32(UART_BASE+0x04,	0x0000001);	//Enable RX interrupt

3.12.2.10 Data Transmission and Reception

Figure 3-118 UART Data Transmission with THRE Bit Status Polling

3.12.2.10.2 Data Reception

Figure 3-119 UART Data Reception with DR Bit Status Polling

3.12.2.10.3 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.12.2.10.4 Reference

16550 UART

3.12.3 Serial Peripheral Interface Master (SPIM)

3.12.3.1.1 SPI Master Overview

The Serial Peripheral Interface Master (SPIM) is a four-pin synchronous serial interface used for short-distance communication, primarily in embedded systems. The device features six SPIM controllers.

3.12.3.1.2 SPI Master Features

The SPIM supports the following key features:

- Six SPIMs in PERISYS. They can support up to 52 MHz. SPIMO is quad mode SPI, while SPIM1/SPIM2/SPIM3/SPIM4/SPIM5 is dual mode SPI.
- Three SPIMs in SCPSYS. They can support up to 26 MHz. SCP_SPIM0/SCP_SPIM1/SCP_SPIM2 is single mode SPI.
- Two configurable transmit modes:
 - TX DMA mode—the SPI controller automatically fetches the transmitted data (to be put on the MOSI (Master Output Slave Input) line) from memory

- TX FIFO mode—the data to be transmitted on the MOSI line is written to FIFO before the start of the transaction.
- Two configurable receive modes:
 - RX DMA mode—the SPI controller automatically stores the received data (from the MISO (Master Input Slave Output) line) into memory.
 - RX FIFO mode—the received data is kept in RX FIFO of the SPI controller. The processor must read back the data by itself.
- Configurable chip-select setup, hold, and idle times
- Programmable serial clock high and low times
- Configurable transmit and receive bit order (MSB or LSB)
- Adjustable endian order from/to memory system
- Programmable byte length for transmission
- Unlimited length for transmission using dedicated pause mode
- Configurable option to control chip-select de-assertion between byte transfers
- Supports all clock polarity and phase modes
- SPIM signal descriptions

3.12.3.1.3 SPIM Block Diagram

Figure 3-120 Block Diagram of SPIM

The SPIM consists of the following modules:

Table 3-120 SPIM Signal Descriptions

Module	Description
Control and status register	Receives commands from the system
DMA control unit	Communicate with SYSRAM when the SPI is set to the DMA mode
Main SPI	The functional unit

© 2023-2024 MediaTek Inc. All rights reserved.

Module	Description
TX/RX FIFO	Both TX and RX have 32 x 8 bits FIFO for data storage
PAD_MACRO	Controls the SPI data capture and transmission to/from the SPI

- In the **FIFO mode**, software can write data into the TX FIFO via *SPI_TX_DATA*, or read data from the RX FIFO via *SPI_RX_DATA*.
- In the **DMA mode**, the SPI is capable of automatically retrieving data from or sending data to SYSRAM via the AHB after the software configures the DMA parameters.

3.12.3.1.4 SPI Master Signal Descriptions

Table 3-121 presents SPIM signal descriptions.

Signal Name	Туре	Description	Ball Location
SPI0 Master		·	
SPIM0_CLK	DO	SPIMO clock	T11
SPIM0_CSB	DO	SPIMO chip select	V6
SPIM0_MISO	DIO	SPIMO data in/SPIMO data 1	V8
SPIM0_MOSI	DIO	SPIMO data out/SPIMO data 0	V7
SPIM0_MIO2	DIO	SPIMO data 2	U7
SPIM0_MIO3	DIO	SPIMO data 3	U8
SPI1 Master		·	
SPIM1_CLK	DO	SPIM1 clock	T10
SPIM1_CSB	DO	SPIM1 chip select	Т9
SPIM1_MISO	DIO	SPIM1 data in/SPIM0 data 1	Т7
SPIM1_MOSI	DIO	SPIM1 data out/SPIM0 data 0	Т8
SPI2 Master		•	·
SPIM2_CLK	DO	SPIM2 clock	G1
SPIM2_CSB	DO	SPIM2 chip select	G2
SPIM2_MISO	DIO	SPIM2 data in/SPIM0 data 1	E2
SPIM2_MOSI	DIO	SPIM2 data out/SPIM0 data 0	F2
SPI3 Master			
SPIM3_CLK	DO	SPIM3 clock	W5, AC6
SPIM3_CSB	DO	SPIM3 chip select	W4, AA6
SPIM3_MISO	DIO	SPIM3 data in/SPIM0 data 1	V5, AB4
SPIM3_MOSI	DIO	SPIM3 data out/SPIM0 data 0	V4, AC7
SPI4 Master		·	
SPIM4_CLK	DO	SPIM4 clock	T30, AC31
SPIM4_CSB	DO	SPIM4 chip select	R31, AD30

Table 3-121 SPIM Signal Descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description	Ball Location	
SPIM4_MISO	DIO	SPIM4 data in/SPIM0 data 1	U32, AB31	
SPIM4_MOSI	DIO	SPIM4 data out/SPIM0 data 0	T31, AC30	
SPI5 Master	·			
SPIM5_CLK	DO	SPIM5 clock	U10, AC9	
SPIM5_CSB	DO	SPIM5 chip select	Y10, AB9	
SPIM5_MISO	DIO	SPIM5 data in/SPIM0 data 1	Y7, AC4	
SPIM5_MOSI	DIO	SPIM5 data out/SPIM0 data 0	Y6, AB8	

3.12.3.1.5 SPI Master Function Description

As introduced in Section 3.12.3.1.2, the following table extends further regarding the SPI features.

Table 3-122 SPIM Function Descriptions				
Features	Description			
IO speed	SPIM[0-5] support up to 52 MHz.			
	SPI_CLK = SOURCE_CLK/2n (n \in N*)			
	The default SOURCE_CLK value is 208 MHz.			
	SCP_SPIM[0-2] support up to 26 MHz.			
	• TX modes ⁽¹⁾			
Two configurable TX/RX modes: TX/RX DMA mode and TX/RX FIFO mode	 TX DMA mode⁽²⁾: The SPI controller automatically fetches the transmitted data (to be put on the MOSI line) from memory. TX FIFO mode: Data transmitted on the MOSI line is written to FIFO before the transaction starts. RX modes⁽³⁾ RX DMA mode: The SPI controller automatically stores the received data (from the MISO line) to memory. RX FIFO mode: Data received is stored in the RX FIFO of the SPI controller. The processor itself must read back the 			
	data.			
Configurable chip-select setup time, hold time and idle time	Refer to Figure 3-121.			
Configurable option to control CS_N de-assert between byte transfers	Refer to Figure 3-123.			
The depth of the TX and RX FIFO is 32 bytes.	 TX: In the TX DMA mode, data on the MOSI line is prepared priorly in memory⁽⁴⁾, and the SPI controller automatically reads the data. In the TX FIFO mode, writing the SPI_TX_DATA register means to write 4 bytes to TX FIFO, whose pointer automatically moves towards the next 4 bytes. 			

Table 3-122 SPIM Function Descriptions

© 2023-2024 MediaTek Inc. All rights reserved.

Features	Description
	 RX: In the RX DMA mode, data on the MISO line is automatically moved by the SPI controller. In the RX FIFO mode, reading from the SPI_RX_DATA register means to read 4 bytes from the RX FIFO, whose pointer automatically moves towards the next 4 bytes.
Programmable serial clock high time and low time	The high and low time can be set separately. Thus, for a given baud rate, the serial clock with a wide range of a duty cycle is generated.
Programmable byte length for transmission	 PACKET_LENGTH defines the number of bytes in one packet. The number of bytes in one packet = PACKET_LENGTH+1. PACKET_LOOP_CNT defines the number of packets within one transaction. The number of packets in one transaction = PACKET_LOOP_CNT+1. Total bytes of one transaction = (PACKET_LENGTH+1) * (PACKET_LOOP_CNT+1)
Unlimited length for transmission using the dedicated pause mode	Achieved by the pause mode operation. In this mode, the CS_N signal is always active (in other modes, normally low) after the transmission. At this time, the SPI controller is in the PAUSE_IDLE state and ready to receive the resume command. Refer to Figure 3-122 for the state transition.
Supports all clock polarity and phase modes	 There are four communication modes: mode 0/1/2/3 (Figure 3-124). The modes define the SCLK edge on which the MOSI line toggles and the master samples to the MISO line. The modes also define the SCLK steady level: clock/high/low, when the clock is inactive. Each mode is formally defined with a pair of parameters namely "Clock Polarity (CPOL)" and "Clock Phase" (CPHA).

(1) The value of SPI_TX_SRC must be 4-byte aligned.

(2) TX data must always be prepared before a transaction. In the DMA mode, TX_DMA_EN must be set to 1'b1. In the FIFO mode, software must put data into the TX FIFO through the SPI_TX_DATA register.

(3) The value of SPI_RX_DST must be 4-byte aligned.

(4) For theory of operations, please refer to Section 3.12.3.1.6.

Figure 3-121 SPI Transmission Formats

Figure 3-122 SPI Pause Mode State Transition

Figure 3-124 Four Communication Modes Waveform for SPI

3.12.3.1.6 SPI Master Theory of Operations

CS_N	-5 -4 -3 -2 -1	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31 32 33 34 35
00_11					······································
SCK					
MOSI		data0	data1	data2	dataN X
MISO		slv data0	slv data1	slv data2	slv dataN
			·		

Figure 3-125 SPI Transaction Format

- In the DMA mode, data to be transferred should be prepared in SYSRAM in advance.
- In the FIFO mode, the system must first push the data to be transferred into the SPI TX FIFO. Once the *START* command is received, the SPI sends the data to the slave continuously while simultaneously receiving data from the slave.

3.12.3.1.7 SPIM Timing Characteristics

Table 3-123 presents timing characteristics for the SPIM in the device.

No.	Parameter	Min	Тур	Max	Unit	
	f _{op_мск}	SPI clock frequency			52	MHz
SPI02	t _c	Cycle time, SPI clock (SPI_CLK)	19.23 ⁽¹⁾			ns
SPI05	t _{w_CLK_L}	Pulse duration, SPI_CLK low	7.2			ns
SPI06	t _{w_CLK_H}	Pulse duration, SPI_CLK high	7.2			ns
SPI07	t _{su_cs} ⁽⁴⁾	SPI_CSB falling to SPI_SCK rising setup time	1.8			ns
SPI08	t _{h_cs} ⁽⁴⁾	SPI_SCK falling to SPI_CSB rising hold time	1.8			ns
SPI09	t _{su_MOSI}	SPI_MO to SPI_CK rising setup time	6.6			ns
SPI10	th_MOSI	SPI_SCK rising to SPI_MO hold time	6.6			ns
SPI11	t _{su_MISO} ⁽²⁾	SPI_MI to SPI_SCKrising setup time requirement	0			ns
SPI12	th_MISO ⁽³⁾	SPI_SCK rising to SPI_MI hold time requirement	0			ns

Table 3-123 SPIM Timing Characteristics

(1) For maximum operating clock frequency, refer to Table 6-1.

(2) To achieve the minimum value of t_{su_MISO}, the internal sample clock delay of SPIM should be adjusted.

(3) $t_{h_{MISO}}$ data valid time should be one cycle of $f_{OP_{MCK}}$.

(4) In CS GPIO mode, SPI_CSB is handled by the software. The software should pull down SPI_CSB pin before SPI starts transferring and pull up SPI_CSB pin when SPI completes the transaction.

Figure 3-126 SPIM Timing Diagram

3.12.3.1.8 SPIM Programming Guide

Follow the steps below to perform an SPI transmission:

- 1. Prepare the data in the memory with its start address to be the "source address."
- 2. Set the timing and protocol for the SPI transmission (see Figure 3-122 for detailed setup parameters).
- 3. Fill in the "destination address," which is the start address to place the received data, and "source address", which is the start address to place the data to be transmitted, into the registers SPI_RX_DST and SPI_TX_SRC, respectively.
- 4. Write 1 to CMD_ACT to start the transfer.
- 5. Get the data received from the buffer prepared starting from "destination address".

3.12.4 SuperSpeed Universal Serial Bus (SSUSB)

3.12.4.1 USB MAC Overview

The device has three USB subsystems with integrated PHYs—one SuperSpeed (SS) USB 3.1 Gen1 DRD and two USB 2.0 Dual-Role-Devices (DRD).

- USB Port 1 supports SS USB 3.1 Gen1 DRD.
- USB Port 0 and USB Port 2 are USB 2.0 DRD ports.

The module contains a pair of U3 Gen1 PHY and U3 Gen1 MAC for SuperSpeed connection, as well as a pair of U2 PHY and U2 MAC for High-, Full- and Low-Speed connection.

The USB2.0 dual role capability allows the port to support On-The-Go (OTG) host and peripheral functions. When operating in the USB2.0 host role, the port is controlled by the host controller (xHC), which manages all devices connected through its root hub ports. Conversely, when operating in the peripheral role, the port is controlled by the device (DEV) controller.

3.12.4.2 Features

- USB 3.1 SS Gen1 with 5 Gbps TX and 5 Gbps RX (USB Port 1 only)
 - Embedded USB 3.1 Gen1 PHY with 32-bit @ 125 MHz PIPE interface
 - U0/U1/U2/U3 states
- USB 2.0 Full-Speed (FS) 12 Mbps and High-Speed (HS) 480 Mbps
 - Embedded USB 2.0 PHY with 16-bit @ 30 MHz UTMI+ interface
 - Lower Power Management (LPM)
- Host role features:
 - Host controller based on eXtensible Host Controller Interface (xHCI) Revision 1.1
 - Dedicated DMA channel for USB 3.1 data transfer
 - Support of all USB compliant data transfer types (Control/Bulk/Interrupt/Isochronous)
 - Support of connection to USB 2.0/USB 3.0 Hubs
 - Support of up to 15 devices
 - Support of up to 64 endpoints
- Device (peripheral) role features:
 - Proprietary application layer device controller
 - Embedded queue management function with scatter/gather DMA capability
 - Shared endpoint and buffer hardware for USB 2.0 port
 - Up to 8 OUT endpoints and 8 IN endpoints
 - Up to 8 packet slots for each endpoint
 - Software configurable FIFO size allocation for each endpoint
 - Software configurable transfer type (Bulk/Interrupt/Isochronous) for each endpoint
 - Software configurable interrupt with the following interrupt statuses: VBUS On/Off, suspend/resume, and USB Reset
 - Software configurable period from VBUS connection to D+ pull-up
 - Data alignment for Device DMA descriptor: 16-byte
 - Data alignment for Device data: Byte alignment

3.12.4.3 Block Diagram

Figure 3-127 Block Diagram of SSUSB

3.12.4.4 USB Signal Descriptions

Table 3-124 presents USB signal descriptions.

Signal Name	Туре	Description	Ball Location		
USB Port 0					
USB_DP_P0	AIO	USB D+ bi-directional differential data	W32		
USB_DM_P0	AIO	USB D- bi-directional differential data	W31		
IDDIG	DI	USB OTG ID. Cable end detector: GND: micro-A Floating: micro-B	R36		
USB_DRVVBUS	DO	USB drive VBUS—signal to external power switch enable	P36		
VBUSVALID	DI	Digital VBUS—valid signal from external circuitry	P34		
USB Port 1		·			
SSUSB_RXN	AI	USB SuperSpeed receive data negative	W36		
SSUSB_RXP	AI	USB SuperSpeed receive data positive	W37		
SSUSB_TXN	AO	USB SuperSpeed transmit data negative	Y34		
SSUSB_TXP	AO	USB SuperSpeed transmit data positive	Y33		
USB_DP_P1	AIO	USB D+ bi-directional differential data	U37		
USB_DM_P1	AIO	USB D- bi-directional differential data	U36		
VBUSVALID_1P	DI	Digital VBUS-valid signal from external circuitry	AC33, T33		
IDDIG_1P	DI	USB OTG ID. Micro-A/B cable end detector	AB34, R34		
USB_DRVVBUS_1P	DO	USB drive VBUS—signal to external power switch enable	AC32, R33		
USB Port 2					
USB_DP_P2	AIO	USB D+ bi-directional differential data	V34		
USB_DM_P2	AIO	USB D- bi-directional differential data	V35		

© 2023-2024 MediaTek Inc. All rights reserved.
Signal Name	Туре	Description	Ball Location
VBUSVALID_2P	DI	Digital VBUS-valid signal from external circuitry	AB33, R30
IDDIG_2P	DI	USB OTG ID. Micro-A/B cable end detector	AD32, P31
USB_DRVVBUS_2P	DO	USB drive VBUS—signal to external power switch enable	AD33, P32

3.12.4.5 Function Description

3.12.4.5.1 Host Architecture

The SSUSB is the designated application for the MediaTek USB host controllers as mentioned in Section 3.12.4.1. Each PHY is equipped with its own MAC for protocol packet management. Figure 3-128 illustrates the architecture of the SSUSB host.

The xHCl controller manages all endpoint and device resources. Dynamic allocation of resources for different ports is achievable by software, which can also enable or disable each port separately.

Figure 3-128 SSUSB host architecture

3.12.4.5.1.1 Features

- Hardware supports USB 3.1 SuperSpeed Gen1 with 5 Gb/s TX and 5 Gb/s RX bandwidth.
- Hardware supports USB 2.0 with Full-speed 12 Mbps/High-speed 480 Mbps.
- Embedded USB 3.1 Gen1PHY with 32-bit 125 MHz PIPE interface
- Embedded USB 2.0 PHY with 16-bit/30 MHz UTMI
- AHB interface for register access
- AXI3 interface for DMA access
- Extensible xHCI Revision 1.1 based host controller
- Lower Power Management (LPM) on USB 2.0 port
- U0/U1/U2/U3 state on USB 3.1 Gen1 port
- Dedicated DMA channel for USB 3.1 data transfer
- Supports all USB compliant data transfer types with control/bulk/interrupt/isochronous transfer
- Compatible to connect to USB 2.0/USB3.0 hubs
- Maximum 15 devices
- Maximum 32 endpoints
- Bulk stream: Not supported
- Transaction Translator (TT) (Multiple Transaction Translator (MTT) not supported)

3.12.4.5.2 Device Architecture Overview

Figure 3-129 illustrates the architecture of the USB2 device function. The USB 2.0 PHY and MAC operate independently for different transmission lines. As only one link can connect to the USB host at a time, they share the same endpoint and buffer management unit.

The linked-list queue of the USB2 device is inherited from the MediaTek unified USB with similar descriptor definition.

Figure 3-129 USB2 Device Architecture

3.12.4.5.2.1 Features

- Hardware supports USB 3.1 Gen1 and USB 2.0 High-speed/Full-speed
- Embedded USB 3.1 PHY with 32-bit/125 MHz (Gen1) PIPE interface
- Embedded USB 2.0 PHY with 16-bit/30 MHz UTMI
- AHB interface for register access
- AXI3 interface for DMA access
- Embedded queue management function with scatter/gather DMA capability
- Proprietary application layer device controller with linked list queue and scatter/gather DMA
- Lower Power Management (LPM) on USB 2.0 port
- U0/U1/U2/U3 state on USB 3.1 Gen1 port
- Shared endpoint and buffer hardware for USB 2.0 and USB 3.1 Gen1 ports
- Hardware configurable to USB 2.0 only device
- Hardware configurable up to 8 OUT endpoints and 8 IN endpoints
- Hardware configurable up to 8 packet slots for each endpoint separately
- Software configurable FIFO size allocation for each endpoint separately
- Software configurable transfer type to Bulk/Interrupt/Isochronous for each endpoint
- Software configurable Interrupt with the following interrupt statuses: VBUS On/Off, suspend/resume, USB Reset
- Software configurable for the period from VBUS connection to D+ pull up
- Data alignment for Device DMA Descriptor "16-byte alignment" in SDRAM
- Data alignment for Device Data: "Byte alignment"
- Bulk stream: Not supported

3.12.4.6 Theory of Operations

3.12.4.6.1 USB Host Initialization

• After Power-On-Reset (POR), USB powers down by default to save power.

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Software must execute the following steps before using USB. Refer to Table 3-125 for details.
 For the MediaTek scheduling algorithm initialization, refer to the kernel drivers implemented in *xhci_mtk_sch_init* () of /usb/host/mtk-xhci-sch.c file.

Step	Address	Register Name	Local Address	R/W	Value	Description
USB I	nitialization	-				
1	ssusb_sifslv_ippc_Base address + 0x00000	SSUSB_IP_PW_CTRL0	SSUSB_IP_SW_RST [0]	w	1′b0	USB Software Reset When this bit is set, the whole USB is reset. Write "0" to release reset. Setting flow: SSUSB_IP_SW_RST [0] = "1", delay 1 µs. SSUSB_IP_SW_RST [0] = "0".
2	ssusb_sifslv_ippc_Base address + 0x0004	SSUSB_IP_PW_CTRL1	SSUSB_IP_HOST_PDN [0]	w	1'b0	This bit is USB power-down bit. Write "0" to disable USB power- down.
Enabl	e USB 3.1 Gen1 Port	1	1			
3	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_DIS [0]	w	1'b0	USB 3.0 port0 disable bit. "0": USB 3.0 port0 is enabled.
4	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_PDN [1]	w	1'b0	USB 3.0 port0 power-down bit. "0": USB 3.0 port0 is powered on.
5	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_HOST_SEL [2]	w	1'b1	This bit is Host mode selection of USB 3.0 port0. "1": This port is selected for Host mode.
Enabl	e USB 2.0 Port	l	•			
6	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_DIS [0]	w	1'b0	USB 2.0 port0 disable bit. "0": USB 2.0 port0 is enabled.
7	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_PDN [1]	w	1'b0	USB 2.0 port0 power-down bit. "0": USB 2.0 port0 is powered on.
8	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_HOST_SEL [2]	w	1'b1	This bit is Host mode selection of USB 2.0 port0. "1": This port is selected for Host mode.
Check	reference clock stabilit	y before software proce	eeds (i.e., Software proceeds a	fter th	e followi	ng status bits are asserted)
9	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_SYSPLL_STABLE [0]	R		When this bit is 1'b1, SYSPLL for USB is stable.
10	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_REF_RST_B_STS [8]	R		When this bit is 1'b1, it means that reset for reference clock (ref_ck) domain is inactive.
11	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_SYS125_RST_B_STS [10]	R		When this bit is 1'b1, it means that reset for sys125_ck domain is inactive.
12	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_XHCI_RST_B_STS [11]	R		When this bit is 1'b1, it means that reset for xhci_ck domain is inactive.

Table 3-125 USB Host Initialization

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

3.12.4.6.2 USB Device Initialization

- After Power-On-Reset, USB powers down by default to save power.
- Software must perform the following steps before using USB. Refer to Table 3-126 for details.

Table 3-126 USB Device Initialization

Step	Address	Register Name	Local Address	R/W	Value	Description
USB I	nitialization					
1	ssusb_sifslv_ippc_Base address + 0x0000	SSUSB_IP_PW_CTRL0	SSUSB_IP_SW_RST [0]	w	1'b0	USB Software Reset. When this bit is set, the whole USB is reset. Write "0" to release reset.
2	ssusb_sifslv_ippc_Base address + 0x0008	SSUSB_IP_PW_CTRL2	SSUSB_IP_DEV_PDN[0]	w	1'b0	SSUSB IP Dev Power Down. When this bit is set, the whole CKBG can be powered down. Write "0" to release reset.
Enabl	e USB 3.1 Gen1 Port (If o	device is USB 2.0 only, pl	ease skip it.)			
3	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_DIS [0]	w	1'b0	USB 3.0 port0 disable bit "0": USB 3.0 port0 is enabled.
4	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_PDN [1]	w	1'b0	USB 3.0 port0 power-down bit "0": USB 3.0 port0 is powered on.
5	ssusb_sifslv_ippc_Base address + 0x0030	SSUSB_U3_CTRL_OP	SSUSB_U3_PORT_HOST_SEL [2]	w	1'b0	This bit is Host mode selection of USB 3.0 port0. "0": This port is selected for Device mode.
Enabl	e USB 2.0 Port					
6	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_DIS [0]	w	1'b0	USB 2.0 port0 disable bit "0": USB 2.0 port0 is enabled.
7	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_PDN [1]	w	1'b0	USB 2.0 port0 power-down bit "0": USB 2.0 port0 is powered on.
8	ssusb_sifslv_ippc_Base address + 0x0050	SSUSB_U2_CTRL_OP	SSUSB_U2_PORT_HOST_SEL [2]	w	1'b0	This bit is Host mode selection of USB 2.0 port0 "0": This port is selected for Device mode.
Check	reference clock stability	y before software procee	ds (i.e., Software proceeds afte	r the f	ollowing	status bits are asserted)
9	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_SYS125_RST_B_STS [10]	R		When this bit is 1'b1, it means that reset for sys125_ck domain is inactive.
10	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_U3_MAC_RST_B_STS[16]	R		When this bit is 1'b1, it means that reset for mac3_mac_ck domain is inactive (If device is USB 2.0 only, please skip it.).
11	ssusb_sifslv_ippc_Base address + 0x0014	SSUSB_IP_PW_STS2	SSUSB_U2_MAC_SYS_RST_B_ STS [0]	R		When this bit is 1'b1, it means that reset for mac2_sys_ck domain is inactive.

© 2023-2024 MediaTek Inc. All rights reserved.

Step	Address	Register Name	Local Address	R/W	Value	Description
Turn	on the USB connection b	y speed. (USB 3.1)				
12	ssusb_sifslv_ippc_Base address + 0x00c8	SSUSB_IP_SPARE0	SSUSB_U3_PORT_SS_SUP_SP EED[1:0]	w	User defined	Users can set the register to force operation speed.
13	ssusb_usb3_mac_csr_B ase address + 0x001c	USB3_CONFIG	USB3_EN[0]	w	1'b1	Enable SuperSpeed function.
Turn	on the USB connection b	y speed. (USB 2.0)				
14	ssusb_usb3_mac_csr_B ase address + 0x001c	USB3_CONFIG	USB3_EN[0]	w	1'b0	Disable SuperSpeed function.
15	ssusb_usb2_csr_Base address + 0x0004	POWER_MANAGEMENT	HS_ENABLE[5]	w	1'b1	Enable high speed function.
16	ssusb_usb2_csr_Base address + 0x0004	POWER_MANAGEMENT	SUSPENDM_ENABLE[0]	w	1'b1	Enable the SUSPENDM output.
17	ssusb_usb2_csr_Base address + 0x0004	POWER_MANAGEMENT	soft_conn[6]	w	1'b1	Enable D+/D- lines.

Note: On USB 3.1 Gen1/USB 2.0 port power down

- Registers in SSUSB_USB3_SYS/SSUSB_USB3_MAC cannot be read correctly when SSUSB_U3_PORT_PDN or SSUSB_U3_PORT_DIS =
 1.
- Registers in SSUSB_USB2 cannot be read correctly when SSUSB_U2_PORT_PDN or SSUSB_U2_PORT_DIS = 1.
- After setting SSUSB_U*_PORT_PDN and SSUSB_U*_PORT_DIS to 0, wait until SYSPLL becomes stable (SSUSB_IPCTL .U3D_SSUSB_IP_PW_STS1. SSUSB_SYSPLL_STABLE).

3.12.4.6.3 USB Endpoint Initialization

3.12.4.6.3.1 EP0 Initialization

- EPO hardware should be configured properly before a successful USB enumeration.
- EPO is controlled by USB only and software fills the correct value into EPO CSR. The EPO initialization is included in the USB initial flow. And it is not recommended to modify it except for the maximum packet size.

Step	Address	Register Name	Local Address	R/W	Value	Description
1	ssusb_dev_Base address + 0x0100	EPOCSR	EP0_MAXPKTSZ0[9:0]	W	USER DEFINED	Set maximum packet size For example, 10'd64
2	ssusb_dev_Base address + 0x0088	EPIESR	EPOIESR[0]	W	1'b1	Endpoint 0 interrupt enable setting
3	ssusb_dev_Base address + 0x0088	EPIESR	SETUPENDIESR[16]	W	1'b1	Endpoint 0 Setup End interrupt enable setting

Table 3-127 EPO Programming Sequence

3.12.4.6.3.2 EPn Initialization

The suggested programming sequence of TX EPn (e.g., EP1) is shown in the table below.

	Table 3-128 TX EPn Programming Sequence							
Step	Address	Register Name	Local Address	R/W	Value	Description		
1	ssusb_dev_Base address + 0x0110	TX1CSR0	TX_TXMAXPKTSZ[10:0]	W	USER DEFINED	Set maximum packet size. For example, 11'd64.		
2	ssusb_dev_Base address + 0x0114	TX1CSR1	SS_TX_BURST[3:0]	W	USER DEFINED	Set burst size.		
3	ssusb_dev_Base address + 0x0114	TX1CSR1	TX_MULT[23:21]	W	USER DEFINED	Set TX_MULT size.		
4	ssusb_dev_Base address + 0x0114	TX1CSR1	TX_MAX_PKT[30:24]	W	USER DEFINED	Number of packets = (SS_TX_BURST+ 1) x (TX_MULT + 1) -1 (Isochronous endpoint only).		
5	ssusb_dev_Base address + 0x0118	TX1CSR2	TXFIFOADDR[12:0]	W	USER DEFINED	Start address of the selected TX endpoint FIFO		
6	ssusb_dev_Base address + 0x0114	TX1CSR1	TX_SLOT[13:8]	W	USER DEFINED	Set slot number of hardware.		
7	ssusb_dev_Base address + 0x0118	TX1CSR2	TXFIFOSEGSIZE[19:16]	W	USER DEFINED	Set FIFO segment size of hardware layout. Indicate the TX FIFO size of 2^n bytes.		
8	ssusb_dev_Base address + 0x0114	TX1CSR1	TXTYPE[5:4]	w	USER DEFINED	Select the required transfer type for the TX endpoint. 2'b00: Bulk 2'b01: Interrupt 2'b10: Isochronous		
9	ssusb_dev_Base address + 0x0118	TX1CSR2	TXBINTERVAL[31:24]	w	USER DEFINED	Interval for servicing the endpoint for data transfer. For Isochronous/Interrupt transfer.		
10	ssusb_dev_Base address + 0x0110	TX1CSR0	TX_DMAREQEN[29]	W	1'b1	Enable EP1 DMA request for the TX endpoint.		
11	ssusb_dev_Base address + 0x0708	QIESRO	TXQ_DONE_IESR[1]	W	1'b1	Enable EP1 TX QMU Done interrupt.		

Table 3-128 TX EPn Programming Sequence

The suggested programming sequence of RX EPn (e.g., EP2) is shown in the table below.

Table 3-129 RX EPn Programming Sequence

Step	Address	Register Name	Local Address	R/W	Value	Description
1	ssusb_dev_Base address + 0x0220	RX2CSR0	RX_RXMAXPKTSZ[10:0]	W	USER DEFINED	Set the maximum packet size. For example, 11'd64
2	ssusb_dev_Base address + 0x0224	RX2CSR1	SS_RX_BURST[3:0]	W	USER DEFINED	Set burst size.
3	ssusb_dev_Base address + 0x0224	RX2CSR1	RX_MULT[23:21]	W	USER DEFINED	Set RX_MULT size.
4	ssusb_dev_Base address + 0x0224	RX2CSR1	RX_MAX_PKT[30:24]	V	USER DEFINED	Number of packets = (SS_RX_BURST+ 1) x (RX_MULT + 1) -1 (Isochronous endpoint only).

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Step	Address	Register Name	Local Address	R/W	Value	Description
5	ssusb_dev_Base	RX2CSR2	RXFIFOADDR[12:0]	w	USER	Start address of the selected
5	address + 0x0228	NAZCSNZ	NATIL OADDN[12.0]	vv	DEFINED	Rx endpoint FIFO.
6	ssusb_dev_Base	RX2CSR1	RX SLOT[13:8]	w	USER	Set slot number of
0	address + 0x0224	IN 20511	111_3101[13:0]		DEFINED	hardware.
						Set FIFO segment size of
7	ssusb_dev_Base	RX2CSR2	RXFIFOSEGSIZE[19:16]	w	USER	hardware layout. Indicate
,	address + 0x0228	INZCONZ			DEFINED	the RX FIFO size of 2 ⁿ
						bytes.
						Select the required transfer
			RX_TYPE[5:4]	w	USER DEFINED	type for the RX endpoint.
8	ssusb_dev_Base	Idress + 0x0224				2'b00: Bulk
	auuress + 0x0224					2'b01: Interrupt
						2'b10: Isochronous
						Interval for servicing the
9	ssusb_dev_Base	RX2CSR2	RXBINTERVAL[31:24]	w	USER	endpoint for data transfer.
9	address + 0x0228	RAZCSRZ	KADINTERVAL[51.24]	vv	DEFINED	For Isochronous/Interrupt
						transfer
10	ssusb_dev_Base	RX2CSR0		w	1'b1	Enable EP2 DMA request for
10	address + 0x0220		RX_DMAREQEN[29] V		TOT	the RX endpoint.
11	ssusb_dev_Base	QIESRO		w	1'b1	Enable EP2 QMU Done
11	address + 0x0708	UIESKU	TXQ_DONE_IESR [18]	vv	TUT	interrupt.

3.12.4.7 Programming Guide

3.12.4.7.1 USB Host

There are certain differences between the MediaTek Host Controller (xHC) and the standard xHCl.

- The MediaTek xHC does not implement completion codes because some TRB (Transfer Request Block) types are defined in xHCl specification. A detailed description is in Section 3.12.4.7.1.1.
- The MediaTek xHC proposes a scheduling mechanism for synchronous endpoints to simplify the hardware design. The mechanism is described in Section 3.12.4.7.1.2.
- Interrupt moderation Interval (IMODI): The standard xHCI interval is 250 ns, while the MediaTek xHC interval is 2 µs.
- Only one of the xHCI extended capability codes, "Supported Protocol" (ID code = 'd2), is implemented in the MediaTek xHC.
- Configuration Information Capability (CIC) feature
- The following features are not implemented in the MediaTek xHC:
 - Frame Length Adjustment Register (FLADJ)
 - The latency tolerance messaging LTV, LTM, and BEL
 - The BUS_INTERVAL_ADJUSTMENT_MESSAGE notification packet

3.12.4.7.1.1 Unsupported TRB Types and Completion Codes

The following TRB types are **not** implemented in the MediaTek xHC:

- Force event command TRB (TRB Type = 18, optional normative)
- Negotiate bandwidth command TRB (TRB Type = 19, optional normative)
- Set latency tolerance value command TRB (TRB Type = 20, optional normative)
- Get port bandwidth command TRB (TRB Type = 21)
- Bandwidth request event TRB (TRB Type = 35)
- Doorbell event TRB (TRB Type = 36)

The following completion codes are **not** implemented in MediaTek xHC:

- Data buffer error (error value = 2)
- Bandwidth error (error value = 8)
- VF event ring full error (error value = 16)
- Bandwidth overrun error (error value = 18)
- Incompatible device error (error value = 22)
- Max exit latency too large error (error value = 29)
- Event lost error (error value = 32)
- Undefined error (error value = 33)
- Secondary bandwidth error (error value = 35)
- Split transaction error (error value = 36)
- Vendor defined error (error value = 192 to 223)
- Vendor defined info (error value = 224 to 255)

3.12.4.7.1.2 Scheduling of Synchronous Endpoint

To simplify the hardware design for bandwidth calculation and scheduling on synchronous endpoints, a proprietary scheduling algorithm is proposed. To implement this algorithm for the MediaTek Host Controller Driver (xHCD), it is necessary to patch the standard Linux xHCD driver. The patch includes the following two steps:

- 1. Calculate whether there is enough bandwidth reserved for the endpoint(s) to be added.
- 2. Determine a set of parameters specifying the scheduling for synchronous endpoint(s) to be added.

• Bandwidth Calculation

Due to offloading of bandwidth calculation by the xHCD, the MediaTek xHC is able to process the following xHCl commands with greater ease:

- 1. Reset the device
- 2. Configure the endpoint (with DC = 1 of Drop Flag(s) = 1)
- 3. Disable the slot command

In addition, the get port bandwidth command TRB is never replaced on the command ring for the MediaTek xHC because all bandwidth information is directly visible to the xHCD.

Decide the Software Scheduling Parameters

The xHCD implements the proprietary scheduling algorithm to enable easy scheduling of synchronous endpoints by the xHC. Prior to issuing the configure endpoint TRB, a set of parameters is defined for each device slot and its related synchronous endpoint. To incorporate these proprietary parameters into the MediaTek xHC, certain reserved fields of the endpoint context are utilized to store their values.

The extra software scheduling parameters are implemented through the commands specified in the xHCI specification, as some reserved DWs in the endpoint context are still available. These additional fields are exclusively reserved for synchronous endpoints, such as isochronous and interrupt endpoints. Table 3-130 shows the modified endpoint context, with the extra defined fields highlighted in orange, and Table 3-131 lists the definitions.

Table 3-131	Extra Defined	Fields for	Endpoint Context
-------------	---------------	------------	------------------

Field Name	Location	Definition			
bPkts[6:0]	DW5[6:0]	Number of packets to be transferred in the scheduled microframes			
		(Unit: microframe 125 μs)			
		 Host will trigger the number of Complete Spilt (CS). 			
		• This field is only for Split Transaction at Full-speed/Low-speed.			
bCSCount[2:0]	DW5[10:8]	• For full-speed/low-speed isochronous IN and interrupt EPs, this represents the			
besedunt[2.0]	DW5[10.8]	pre-defined number of CS to be in a service interval.			
		• For full-speed/low-speed isochronous OUT EPs, this represents the pre-defined			
		number of SS (Start Spilt) to be in a service interval.			
		Burst mode for scheduling			
		Normal burst mode is used by default.			
bBM	DW5[11]	• 0: Normal burst mode. Distribute the bMaxBurst+1 packets for a single burst			
(bBurstmode)	DWS[II]	according to bPkts and bRepeat, and repeat the burst multiple times.			
		 1: Distribute the (bMaxBurst+1)*(Mult+1) packets according to bPpkts and 			
		bRepeat.			
	DW6[15:0]	Which microframe of the interval that is transferred should be scheduled at the first			
bOffset[17:0]	DW5[13:12]	time within the interval			
	5775[15.12]	(Unit: microframe 125 μs)			
bRepeat[17:0]	DW6[31:16]	The time gap between two microframes, in which transfer USB packets are scheduled			
Suchear[11:0]	DW5[15:14]	within an interval			

© 2023-2024 MediaTek Inc. All rights reserved.

Page 225 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Field Name	Location	Definition	
		(Unit: microframe 125 μs)	

The relation between the extra defined field parameters and microframes is illustrated in the figure below. For example: EP5 parameters, mult = 0, maxburst = 6, interval = 4

- 1. EP5 service interval = 2^(4 1) = 8 microfames. EP5 total pkts = (mult + 1) x (maxburst + 1) = 7
- 2. The parameters of the extra defined fields can be scheduled as the following figure shows.

Figure 3-130 Relation between Extra Defined Fields Parameters and Microframes

The relation between the extra defined field parameters and microframes for split transaction at full-speed/low-speed is illustrated in the figure below.

For example: Split IN Transaction for FS/LS. If EP internal = 1 (1ms)

- 1. Service Interval = 8 microframes.
- 2. The parameter of the extra defined fields bCScount value is as shown below.

Figure 3-131 Relation between bCSCount Parameters and Microframes

The software flow of "xhci_add_endpoint" configuration by a standard xHCl driver is illustrated in Figure 3-132. To add extra defined field parameters to endpoint context, a sub-flow is patched. This patched sub-flow is marked by red dash line in Figure 3-133.

Figure 3-132 Standard xHCI_add_endpoint() Flow

Figure 3-133 Patched xHCI_add_endpoint() Flow

The software flow of "xhci_drop_endpoint" configured by a standard xHCl driver is illustrated in Figure 3-134. To drop software recording extra defined field parameters, a sub-flow is patched. This patched sub-flow is marked by red dash line in Figure 3-135.

Figure 3-134 Standard xHCI_drop_endpoint() Flow

Figure 3-135 Patched xHCI_drop_endpoint() Flow

Refer to the Linux standard xHCl kernel driver (version 4.5 or later) in *drivers/usb/host/mtk-xhci-sch.c* file for more details about the extra defined field parameters for endpoint scheduling.

3.12.4.7.2 USB Device

3.12.4.7.3 EPO Top Programming Outline

The EPO control is a state machine with three state modes:

- Idle mode
- TX mode
- RX mode

Figure 3-136 EPO States

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited. MEDIATEK

- EPO interrupt is generated when
 - EPOCSR.RxPktRdy bit is set after a data packet has been received and stored into FIFO0;
 - Data packet in FIFO0 has been sent to host successfully;
 - EPOCSR.SentStall bit is set after the host receives STALL;
 - EPISR.SETUPENDISR bit is set after SETUP transaction is received in the DATA/STATUS phase.
- EPISR.SETUPENDISR indicates that the current control transfer is aborted.
 - Set when
 - IN transaction is received after *EPOCSR.DATAEND* is set to leave the TX mode (STATUS phase).
 - OUT transaction is received after *EPOCSR.DATAEND* is set to leave the RX mode (STATUS phase).
 - SETUP transaction is received in the TX mode or RX mode (DATA phase).
 - Cleared when
 - Software sets EPISR.SETUPENDISR.
 - Software can unload FIFO and decode the new command.
 - EPOCSR.DataEnd indicates that data phase has finished.
 - Set by software when
 - In the TX mode or RX mode, the amount of data required by host is sent/received.
 - In the TX mode, a smaller amount of data required by the host is sent. The device has to notify the host by sending a short packet.
 - In the RX mode, a short packet is received.
 - Cleared by hardware when
 - (Normal) Status phase finishes successfully.
 - (Error) EPISR.SETUPENDISR is set.

3.12.4.7.3.1 Idle Mode

Upon power-on or reset, EPO goes into the "IDLE" mode. After receiving a SETUP transaction:

- EPOCSR.SetupPktRdy is set.
- EPOCSR.DPHTX is cleared.
- An interrupt is generated to notify software.

The software unloads FIFO and decodes the command which, depending on the type, enables the software to do the following:

- (Sequence 1/IN DATA) W1C EPOCSR.SetupPktRdy and set EPOCSR.DPHTX. EPO goes to TX mode.
- (Sequence 2/OUT DATA) W1C EPOCSR.SetupPktRdy. EPO goes to RX mode.
- (Sequence 3/NO DATA) process command. Then, W1C EPOCSR.SetupPktRdy and set EPOCSR.DataEnd (or set EPOCSR.SendStall) simultaneously.
 EPO stays in "IDLE" state.

Figure 3-137 EPO Idle Flow Chart

Figure 3-138 EPO Idle

3.12.4.7.3.2 TX Mode

Normal Flow

- Software loads data packet (<=EPOCSR.MaxPktSz0) to FIFOO, and sets EPOCSR.TxPktRdy to send it to the host.
- If EPOCSR.AutoSet is set, software only needs to set EPOCSR.TxPktRdy for the last data packet (a short packet).
- After sending data packet to the host, EPOCSR.FIFOFull is cleared and an interrupt is generated to notify software.
- Software repeats the previous step until the required amount of data is sent, and set *EPOCSR.DATAEND* to leave DATA phase.
- Error Cases
 - If a SETUP transaction is received in TX mode (DATA phase), *EPISR.SETUPENDISR* is set and an interrupt is generated. Software aborts the current command and moves on to decode the new command.

Figure 3-139 EPO TX Mode Flow Chart

Figure 3-140 EP0 TX Mode Flow Chart

3.12.4.7.3.3 RX Mode

- Normal flow
 - After receiving data packet (<=EPOCSR.MaxPktSz0), hardware sets EPOCSR.RxPktRdy and generates an interrupt.
 - Software unloads data packet (<= EPOCSR.MaxPktSz0) from FIFO0 and W1C EPOCSR.RxPktRdy.
 - If EPOCSR.AutoClear is set, EPOCSR.RxPktRdy is cleared automatically after data packet is unloaded, unless the data packet is of a size of 0. Software needs to W1C EPOCSR.RxPktRdy under this condition.
 - Software repeats the previous step until the required amount of data is received or a short packet is received, and set *EPOCSR.DATAEND* to leave the DATA phase.

Error cases

 If a SETUP transaction is received in the RX mode (DATA phase), *EPISR.SETUPENDISR* is set and an interrupt is generated. Software aborts the current command and moves on to decode the new command.

Figure 3-141 EP0 RX Mode Flow Chart

Figure 3-142 EPO IDLE for RX Mode

3.12.4.7.4 QMU Top Programming Outline

The Queue Management Unit (QMU) is designed to unload software effort to serve DMA interrupts. By preparing GPD (USB) and the Buffer Descriptor (BD), software links data buffers and triggers the QMU to send/receive data to the host/from the device at a time.

3.12.4.7.4.1 GPD (USB) and BD Introduction

Figure 3-143 GPD (USB)/BD Bus Transfer

Figure 3-144 GPD (USB)/BD with Extension

Item	Description			
BD	Must contain a pointer pointing to a data buffer.			
	Capable of linking to another BD.			

© 2023-2024 MediaTek Inc. All rights reserved.

Page 235 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Item	Description
	Capable of extension. Data is placed in memory immediately after this BD.
	• Must contain a pointer pointing to a data buffer if this GPD (USB) does not link to any BD.
	Capable of linking to several BDs.
	• Capable of extension. Data is placed in memory immediately after this GPD (USB).
	• Maps to a transfer on the USB. Data buffers are concatenated and transferred on the USB,
	data packet by data packet. Each data packet is smaller than Maximum Packet Size (MPS).
GPD (USB)	The order data buffers are concatenated.
	 – GPD (USB) extension
	 GPD (USB) data buffer
	• For each BD in the chain
	 BD extension
	 BD data buffer

This section provides a brief description of BD and GPD (USB), with a comprehensive descriptor format presented in the following section for a more thorough understanding.

3.12.4.7.4.2 TX GPD (USB)/BD Format

Figure 3-145 shows the format of TX GPD (USB)/BD. For detailed description, refer to Section 3.12.4.7.4.4 and 3.12.4.7.4.5.

3.12.4.7.4.3 RX GPD (USB)/BD Format

Figure 3-146 shows the format of RX GPD (USB)/BD. For detailed description, refer to Section 3.12.4.7.4.4 and 3.12.4.7.4.5.

3.12.4.7.4.4 GPD (USB) Field Description

Field	Description
Hardware Ownership (HWO)	Indicates the current ownership of this GPD, the associated BD(s) and the
	associated data buffer(s).
	• 0: Software has the ownership.
	• 1: Hardware has the ownership.
Ruffer Descriptor Present (RDR)	• 0: DWORD@0x8 points to a data buffer.
Buffer Descriptor Present (BDP)	• 1: DWORD@0x8 points to a BD.
Bypass (BPS)	• 0: Hardware does not skip this GPD if HWO = 1.
	• 1: Hardware skips this GPD if HWO = 1.
	O: Hardware does not issue an interrupt when this GPD (and the associated
Interrupt On Completion (IOC)	BDs) is completed.
interrupt on completion (ioc)	• 1: Hardware issues an interrupt when this GPD (and the associated BDs) is
	completed.
	Validates the contents of this GPD (USB).
	 If TXQ_CS_EN/RXQ_CS_EN bit is set, an interrupt is issued when checksum
GPD (USB) Checksum	validation fails.
	• Q_CS16B_EN decides the way in which the checksum value is calculated.
	 Over the first 12 bytes of this GPD (USB)
	 1: Over the first 16 bytes of this GPD (USB)
(RX only) Allow Data Buffer Length	Indicates the length of the assigned data buffer.

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Field	Description
Next GPD(USB) Pointer	• Value! = 0, pointing to the next GPD (USB).
Next GFD(03b) Folitter	• Value = 0, not pointing to any GPD (USB).
Data Buffer/BD Pointer	Refer to BDP description.
(TX only) Data Buffer Length	Indicates the length of the assigned data buffer.
	After receiving a transfer, the total length of data is written to this field.
(RX only) Transferred Data Length	• If the total length of data is over 64 K, '0' is written to this field. Software has to
	sum up all BD "Transferred Data Length" to get the total length of data.
	O: Not to use the GPD (USB) extension feature.
(TX only) GPD (USB) Extension	• 1-255: Specifies the GPD (USB) extension buffer size. GPD (USB) extension
Length	buffer is placed in memory immediately after this GPD (USB).
	Zero Length Packet (ZLP)

3.12.4.7.4.5 BD Field Description

	Table 3-133 BD Field Description	
Field	Description	
End of List (EOL)	• 0: Not the last BD in the chain. The next BD is pointed by "Next BD Pointer".	
	• 1: The last BD in the chain.	
	Validates the contents of this BD.	
	• If TXQ_CS_EN / RXQ_CS_EN bit is set, an interrupt is issued when checksum	
B Checksum	validation fails.	
B Checksum	• Q_CS16B_EN decides the way that checksum value is calculated.	
	 Over the first 12 bytes of this BD. 	
	 1: Over the first 16 bytes of this BD. 	
(RX only) Allow Data Buffer		
Length	Indicates the length of the assigned data buffer.	
Next BD Pointer	Point to the next BD. Refer to EOL description.	
Data Buffer	Point to data buffer	
(TX only) Data Buffer Length	Indicates the length of the assigned data buffer.	
(DV only) Transforred Data Longth	After receiving a transfer, the length of data transferred to the data buffer is written	
(RX only) Transferred Data Length	to this field.	
	O: Not to use BD extension feature.	
(TX only) BD Extension Length	• 1-255: Specifies the BD extension buffer size. BD extension buffer is placed in	
	memory immediately after this BD.	

Table 3-133 BD Field Description

3.12.4.7.5 TXQ Programming Flow

Figure 3-147 TXQ Programming Flow

3.12.4.7.5.1 TXQ Initialization Flow

Refer to "MT8370 Register Map" for detailed register descriptions.

Figure 3-148 TXQ Initialization Flow

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

3.12.4.7.5.2 TXQ Stop Queue Flow

During the operation of TXQ, certain scenarios may arise that require the software to halt the current transfer. In such cases, there are two notification methods employed to inform the host.

- The first method involves explicitly notifying the host by STALLing EP.
- The second method involves implicitly notifying the host by sending a short packet to terminate the current transfer.

Regardless of the chosen notification method, it is essential for the host to perform error handling, and the device side must initiate the TXQ restart procedure based on the specific application requirements.

3.12.4.7.5.3 TXQ STALL (Recommended)

Figure 3-149 TXQ STALL Flow

3.12.4.7.5.4 TXQ Short Packet (I)

In this scenario, the host receives a ZLP, leading to the termination of the IN transfer. As EPOUT_RST is not utilized, data is fetched before the TXQ is halted. Upon the resumption of the TXQ, the data may be transmitted to the host as required.

Figure 3-150 TXQ Short Packet (I) Flow

3.12.4.7.5.5 TXQ Short Packet (II)

In this scenario, the device software must ensure that the short packet aligns with the description specified in GPD (USB) to allow the host to receive the short packet and terminate the IN transfer. As EPOUT_RST is not employed, the data is fetched before the TXQ is halted. Upon the resumption of the TXQ, the data may be transmitted to the host as required.

Figure 3-151 TXQ Short Packet (II) Flow

3.12.4.7.5.6 TXQ Error Handling Flow

Figure 3-152 TXQ Error Handling Flow

3.12.4.7.5.7 TXQ GPD (USB) Execution Flow

- TXQn empty interrupt
- A TXQn done interrupt. Base on IOC
- XQn checksum error interrupt

Figure 3-153 TXQ GPD (USB) Execution Flow

Note that if a "bus transaction error" occurs, the TXQn endpoint error interrupt is asserted. The bus transaction error shall not occur in the normal case.

3.12.4.7.6 RXQ Programming Flow

Figure 3-154 RXQ Programming Flow

Refer to "MT8370 Register Map" for detailed register descriptions.

Figure 3-155 RXQ Initialization Flow

3.12.4.7.6.1 RXQ Stop Queue Flow

During the operation of RXQ, certain scenarios may arise that require the software to halt the current transfer. In such cases, there are two notification methods employed to inform the host.

- The first method involves explicitly notifying the host by STALLing EP.
- The second method involves silently dropping packets.

In the first case, the host must perform error handling. Upon the resumption of the RXQ, the device side initiates the restart procedures based on the specific application requirements.

3.12.4.7.6.2 RXQ STALL (Recommended)

Figure 3-156 RXQ STALL Flow

3.12.4.7.6.3 RXQ Drop Packet

The device may experience reception errors due to the interruption and resumption of RXQ while the host is engaged in an OUT transfer. During this process, some packets may be dropped, thereby corrupting the received data. To mitigate this issue, the device must perform error handling procedures.

Figure 3-157 RXQ Drop Packet Flow

3.12.4.7.6.4 RXQ Error Handling Flow

Figure 3-158 RXQ Error Handling Flow

3.12.4.7.6.5 RXQ GPD (USB) Execution Flow

Figure 3-159 RXQ GPD (USB) Execution Flow

Note that if a "bus transaction error" occurs, the RXQn endpoint error interrupt is asserted. The bus transaction error shall not occur in the normal case.

3.12.4.8 Interrupt Top Programming Outline

1. Adopt the multi-level interrupt architecture.

Figure 3-160 Interrupt Architecture

Refer to "MT8370 Register Map" for interrupt occurrence conditions.

Generally, there are two kinds of interrupt occurrence conditions:

Condition	Description
Endpoint TX/RX INT (0x80)	For the USB device, each EP has its own independent interrupt status bit, in order
	to indicate which EP interrupt occurs.
	The USB device does the transfer by QMU block. At QMU, software needs to fill
	GPD (USB) or BD to queue transfer.
	TXQ Err INT (0x780,0x790):
TXQ Err INT (0x780,0x790),	TX Queue GPD (USB)/BD Checksum Error
RXQ Err INT(0x7c0,0x7d0)	TX Queue GPD (USB) Data Buffer Length Error
	• RXQ Err INT (0x7c0,0x7d0):
	RX Queue Generic Packet Descriptor Checksum Error
	RX Queue Generic Packet Descriptor Data Buffer Length Error

2. ISR (USB)

- Only ISR (USB) in "leaf" node can be W1C; ISR (USB) in "non-leaf" node is RU.
- "Leaf" node ISR (USB) should be W1C to clear ISR (USB) in "non-leaf" node after the corresponding events are served.

3. IER (Interrupt Enable Register)

The IER can be set/cleared by writing 1 to Interrupt Enable Set Register (IESER)/Interrupt Enable Clear Register (IECR), except for *MAC2_INTR/MAC3_INTR/EP_CTRL_INTR*.

- If the low level IER is not set, when an event happens, it is reflected in the low level ISR (USB), but not the high level ISR (USB) (as shown in the left side of the figure below).
- If the low level IER is set, when an event happens, it is reflected in the low level ISR (USB) and high level ISR (USB) (As shown in the right side of the figure below)

Figure 3-161 Example Interrupt Setting

3.12.4.8.1 Queue Management Unit (QMU) Interrupt Architecture

Figure 3-162 QMU Interrupt Layer

A queue has different behaviors for different TX/RX interrupts.

Interrupt	Behavior
ТХ	A queue does not stop when
	 A queue is completed when GPD is done with IOC = 1.
	A queue stops when
	 A queue is empty.
	 There is a queue, checksum, or length error.
RX	A queue does not stop when
	 A queue is completed when GPD is done with IOC = 1.
	 There is a queue or ZLP error.
	A queue stops when
	 A queue is empty.

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Interrupt	Behavior
	 There is a queue, checksum, or length error.

The figure below depicts the related status/mask/mask set/mask clear registers for each group.

Figure 3-163 Interrupts Status/Mask/Mask Set/Mask Clear

3.12.4.9 Power Saving Scenario

In order to conserve power, USB provides registers for software to power down the unnecessary hardware parts.

Init

Figure 3-164 Power Saving Flow: Initial

Figure 3-165 Power Saving Flow: SuperSpeed

Figure 3-166 Power Saving Flow: High-speed and Full-speed

3.12.4.9.1 LPM Recommended Setting

• *lpm_mode = 0* and *lpm_hrwe = 0*: Normal LPM mode, enable hardware remote wakeup.

SSUSB_DEV.MAC_U2_EN_CTRL [20:16] = 0x1f: Enable LPM to accept check and accept LPM request when all QMU/EP are inactive.

For Bulk transfer:

- OUT EPs: Enable L1_EXIT_EP_OUT_CHK and L1_EXIT_EP_OUT_FC_CHK.
- IN EPs: Enable L1_EXIT_EP_IN_CHK and L1_EXIT_EP_IN_FC_CHK.
- EP0: Enable L1_EXIT_EP0_CHK and L1_EXIT_EP0_FC_CHK.

Therefore, the device can resume the bus as long as EP FIFO is ready, and the flow control assures that the EP has data to transfer or accept.

For periodic (isochronous/interrupt) EPs, the host can easily predict the point to send/receive data. Therefore, it is better for the host to determine the time point to resume the bus and process transfers. It is suggested to disable L1_EXIT_EP_OUT_CHK and L1_EXIT_EP_IN_CHK for periodic EPs.

3.12.4.10 USB Device Reset Mode

Table 3-134 Reset Sequence of USB Device Mode

Step	Address	Register Name	Local Address	R/W	Value	Description			
Toggl	Toggle USB software reset								
1	ssusb_sifslv_ippc_Base address + 0x0000	SSUSB_IP_PW_CTRL0	SSUSB_IP_SW_RST [0]	w	1'b1	USB Software Reset. When this bit is set, the whole USB is reset. Write "0" to release reset.			
2			Delay 1µs						
3	ssusb_sifslv_ippc_Base address + 0x0000	SSUSB_IP_PW_CTRL0	SSUSB_IP_SW_RST [0]	w	1'b0	USB Software Reset. When this bit is set, the whole USB is reset. Write "0" to release reset.			
Check	k reset status								
1	ssusb_sifslv_ippc_Base address + 0x0014	SSUSB_IP_PW_STS2	SSUSB_U2_MAC_SYS_RST_ B_STS [0]	R		When this bit is 1'b1, it means that reset for mac2_sys_ck domain is inactive.			
2	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_U3_MAC_RST_B_ST S [16]	R		When this bit is 1'b1, it means that reset for mac3_mac_ck domain is inactive.			
3	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_DEV_QMU_RST_B_ STS [1]	R		When this bit is 1'b1, it means that reset for device QMU sys_ck domain is inactive.			
4	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_DEV_BMU_RST_B_ STS [2]	R		When this bit is 1'b1, it means that reset for device BMU sys_ck domain is inactive.			
5	ssusb_sifslv_ippc_Base address + 0x0010	SSUSB_IP_PW_STS1	SSUSB_DEV_RST_B_STS [3]	R		When this bit is 1'b1, it means that reset for device excluding BMU and QMU sys125_ck. domain is inactive.			

3.12.4.10.1 Address Reset

When the following conditions happen, the device address is reset to 0.

- USB 2.0
 - Upon receiving bus reset
- USB 3.1 Gen1
 - When entering the "Polling" state
 - When receiving a warm Reset, and then entering the "Polling" state.
 - When receiving a hot reset.

3.12.4.10.2 EP Reset

The EPs are reset by hardware when the following conditions happen.

- USB 2.0
 - Upon receiving bus reset
 - Reset
 - Data toggle
 - FIFO pointer (FIFO address register is not touched)
 - EP flow control status
- USB 3.1 Gen1
 - When entering the "Polling" state
 - When receiving a warm reset, and then entering the "Polling" state.
 - When receiving a hot reset.
 - Reset
 - EP sequence number
 - EP flow control status
 - EP packet pending status
 - EP packet counter
 - EP active status
 - FIFO pointer (FIFO address register is not touched.)

The following commands may affect the EP application and its configuration.

- SET_CONFIGURATION
- SET_INTERFACE
- CLEAR_FEATURE ENDPOINT_HALT

Therefore, the software can do the following operations before EP re-configuration:

- Use bits in the register of EP_RST to reset each EP.
- Stop the corresponding queue(s).

3.12.4.11 EPn MCU Mode Top Programming Outline (BULK Interrupt Mode Only)

3.12.4.11.1 EPn MCU Mode TX Programming Flow

- *TXnCSR0.TxMaxPktSz* defines the maximum packet size (in bytes). Software can load data into FIFOn at a time.
- IN transfer flow
 - a. Software checks whether FIFOn is full. If not, software loads a data packet to FIFOn, and sets TXnCSR0.TxPktRdy.
 - b. After a data packet is sent to the host, an interrupt is generated to notify software to repeat the operation until all data is sent to the host.

Figure 3-167 EPn MCU Mode TX Programming Flow

3.12.4.11.2 EPn MCU mode RX Programming Flow

- *RXnCSR0.RxMaxPktSz* defines the maximum packet size (in bytes). Software can load data from FIFOn at a time.
- OUT transfer flow:
 - 1. *RXnCSR0.RxPktRdy* is set and an interrupt is generated to notify software.
 - 2. Software reads RXnCSR3.EP_RX_COUNT, unloads RXnCSR3.EP_RX_COUNT bytes from FIFOn and W1C RXnCSR0.RxPktRdy.
 - 3. Software repeats operation until there is no more data.

Figure 3-168 EPn MCU Mode RX Programming Flow

3.12.4.12 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.12.4.13 References

- Protocol
 - Universal Serial Bus 3.1 Specification, Revision 1.0, July 26, 2013
 - Universal Serial Bus Specification, Revision 2.0, April 27, 2000
 - Extensible Host Controller Interface (xHCI) for Universal Serial Bus, Revision 1.1,12/20/2013
- PHY
 - PHY Interface for the PCI Express, SATA, and USB 3.1 Architectures, Version 4.3
 - UTMI+ Specification, Revision 1.0, February 25th, 2004
- Bus
 - AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite, 28 October 2011

3.12.4.14 USB 3.1 PHY Overview

The PHY is responsible for managing the low-level protocol and signaling functions. This includes data serialization and deserialization, 8b/10b encoding/decoding (5 Gbps), analog buffers, elastic buffers and receiver detection.

The controller interfaces with the PHY via a PIPE (SuperSpeedPlus) interface. The PIPE supports 32 bits * 125 MHz (5 Gbps).

3.12.4.15 Features

- Fully compliant with USB 3.1 Specification
- Electrical sub-blocks support 5.0 GT/s operation, which is compliant with USB 3.1 electrical specification.
- Fully compliant with PHY interface for the USB Architectures (PIPE), Version 4.3
- Utilizes the 32-bit parallel interface for 5.0 GT/s.

3.12.4.16 Block Diagram

Figure 3-169 Block Diagram of USB 3.1 Gen1 PHY

Figure 3-169 displays the USB3.1 PHY block diagram, which comprises two main sub-modules: the Physical Layer Analog Block (PHYA) and the Physical Layer Digital Block (PHYD).

• The PHYA includes:

- The TX driver, which outputs differential pair signals.
- The RX front-end, which receives differential pair data.
- The CDR, which recovers timing information from the serial data stream.
- Serializer and de-serializer, which convert data between the serial and parallel data interfaces in each direction.
- The PHYD includes:
 - 8b/10b encoder and decoder (for 5.0 GT/s)
 - Elastic buffers, which compensate for differences in frequencies between bit rates at the ends of a link.

For the FT/debug mode, the I2C interfaces (*sif_scl, sif_sdin, sif_sdout*, and *sif_sden*) of the *PEXTP_PHY_TOP* connection should be verified and controlled through the pin. In addition, in the FT/debug mode, the Schmitt trigger should be enabled at the pads of I2C SDA/SCL. Refer to Figure 3-170 for the I2C signal connection.

Figure 3-170 Connection of I2C Signals

3.12.4.17 Electrical Characteristics

The SSUSB electrical characteristics are compatible with USB 3.1 Specification Revision 1.1.

Description	Min.	Тур.	Max.	Unit		
SSC modulation rate	30	-	33	kHz		
SSC deviation	+0/-4000 (Gen 1)	-	+0/-5000(Gen 1)	ppm		
Noto:						

Table 3-135 USB 3.1 Spread Spectrum Clock (SSC) Electrical Characteristics

Note:

• Refer to USB 3.1 Specification Revision 1.1, Section 6.5.4, Table 6-17.

Description	Min.	Тур.	Max.	Unit		
Transmitter Parameters	Transmitter Parameters					
Data rate	10			GT/s		
Unit interval*	199.94 (Gen 1)	-	200.06 (Gen 1)	ps		
TX differential peak to peak voltage swing	0.8	1	1.2	V		
TX eye width	0.625 (Gen 1)	-	-	UI		
DC differential TX impedance	72	-	120	Ω		

Description	Min.	Тур.	Max.	Unit	
TX AC common mode voltage active	-	-	100	mV	
SSC maximum slew rate	-	-	10	ms/s	
Receiver Parameters					
LFPS detect threshold	100	-	300	mV	
DC differential RX impedance	72	-	120	Ω	

Note:

• Do not account for SSC caused variations. Refer to USB 3.1 Specification Revision 1.1, Section 6.7.1, Table 6-18, Table 6-19.

3.12.4.18 Interface Signal

3.12.4.18.1 Analog Pads

Signal Name	Input/Output	Description
PAD_SSUSB_RXN_P1/2	Inout	Analog PAD, Lane0/1 RX-
PAD_SSUSB_RXP_P1/2	Inout	Analog PAD, Lane0/1 RX+
PAD_SSUSB_TXN_P1/2	Inout	Analog PAD, Lane0/1 TX-
PAD_SSUSB_TXP_P1/2	Inout	Analog PAD, Lane0/1 TX+
PAD_XTP_GLB_CKP	Inout	Analog PAD, Ref 100MHz CK+
PAD_XTP_GLB_CKN	Inout	Analog PAD, Ref 100MHz CK-

3.12.4.18.2 Clock and Testing

Signal Name	Input/Output	Description	Note
ANA_OLT	Input	Stress test mode	Reserved. Tied to 0.
ANA_SCAN	Input	Analog scan signal	
AD_XTP_GLB_*_OLT_*	Output	Monitor analog signal by LED	
DA_XTP_GLB_*_SCAN_*		Analog scan signals	
ADA_XTP_GLB_LDO_VREF	Input	Analog LDO reference voltage for HTOL.	Provide HTOL VREF if needed. Otherwise, connect to ADA_XTP_GLB_TIELO_12.
ADA_XTP_GLB_TIELO_12	Output	Analog low signal for unused input-type ADA_*.	
ADA_XTP_GLB_MOUNT	Inout	Analog debug signal	
ADA_XTP_GLB_POR_RSTB_15	Inout	Analog power-on reset	1.5V power domain.
ADA_CKM_XTAL_CK	Input	Ref 26 MHz CK from analog module	Provide 26 MHz clock if needed. Otherwise, connect to ADA_XTP_GLB_TIELO_12.
DA_CKM_XTAL_CK	Input	Ref 26 MHz CK from digital module	Provide 26 MHz clock if needed. Otherwise, tie 0.

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Signal Name	Input/Output	Description	Note
scan_mode	Input	Scan Related	 1: Scan mode. 0: Function mode.
scan_500m_ck	Input	Scan 500 MHz clock	500 MHz clock for ATPG test.
scan_312p5m_ck	Input	Scan 312.5 MHz clock	312.5 MHz clock for ATPG test.
scan_625m_ck	Input	Scan 625 MHz clock	625 MHz clock for ATPG test.
scan_enable	Input	Scan related	Scan shift enabled.
scan_enable_cg	Input	Scan related	Clock gating enable during scan shifting.
ext_pwr_rst_b	Input	Power on reset	System reset. It should be combined with software reset.
sspxtp_sys_ck_type	Input	Reference clock type (ref_ck) 3'd0: 20 MHZ 3'd1: 24 MHZ 3'd1: 25 MHZ 3'd2: 26 MHZ 3'd3: 27 MHZ	
ref_ck	Input	Reference clock, should follow sspxtp_sys_ck_type setting frequency.	
sspxtp_ckm_en	Output	CKM control signal	
sspxtp_ckm_intck_req	Output	CKM request signal	
sspxtp_ckm_padck_req	Output	CKM request signal	
sspxtp_sleep	Output	USB low power state signal	
sspxtp_probe[15:0]	Output	SSUSB probe out signal	 For debug mode: Confirm whether sspxtp_dig_top/sspxtp_probe[15:0] can be output correctly. For FT mode: Confirm whether sspxtp_dig_top/sspxtp_probe[15:0] can be output correctly.

3.12.4.18.3 I2C

Signal Name	Input/Output	Description	Note
sspxtp_i2c_mode	Input	SSUSB register control mode selection • 1'b0: AHB mode • 1'b1: I2C mode	 Should be 1'b0 by default in normal mode. Should be controlled by the chip. Should be set to 1'b1 in FT mode.
sspxtp0_saddr[6:0]	Input	I2C device address	Request I2C device address. Device address is 7'h51.

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Signal Name	Input/Output	Description	Note	
sspxtp0_sclk	Input	I2C SCLK		
sspxtp0_sdin	Input	I2C SDIN	Refer to Figure 3-170.	
sspxtp0_sdout	Output	I2C SDOUT	Refer to figure 3-170.	
sspxtp0_sden	Output	I2C SDEN		

3.12.4.18.4 AHB

Signal Name	Input/Output	Description	Note
mcu_bus_ck	Input	AHB interface clock for SSUSB	Connected to the CPU bus
sspxtp_phy_slv_hsel	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hwrite	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_htrans[1:0]	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hsize[1:0]	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_haddr[31:0]	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hwdata[31:0]	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hready_in	Input	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hresp	Output	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hready	Output	AHB interface	Connected to the CPU bus
sspxtp_phy_slv_hrdata[31:0]	Output	AHB interface	Connected to the CPU bus

3.12.4.18.5 PHY to MAC PIPE Interface

Signal Name	Input/Output	Description	Note
sspxtp_pipe0_rst_b	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_disable	Input	PIPE signal	Connect to SUB MAC
sspxtp_pipe0_rate	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_powerdown[1:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_detectrx	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_elecidle	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_term	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_deem[17:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_enc_dec_bypass	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_block_align_ctrl	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_eq_training	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_polarity	Input	PIPE signal	Connect to USB MAC

Signal Name	Input/Output	Description	Note
sspxtp_pipe0_tx_oneszeros	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_data_valid	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_sync_header[3:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_start_block	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_datak[3:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_data[31:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_tx_data[31:0]	Input	PIPE signal	Connect to USB MAC
sspxtp_pipe0_phystatus	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_valid	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_elecidle	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_status[2:0]	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_sync_header[3:0]	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_data_valid	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_start_block	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_data[31:0]	Output	PIPE signal	Connect to USB MAC
sspxtp_pipe0_rx_datak[3:0]	Output	PIPE signal	Connect to USB MAC

3.12.5 Ethernet Network Interface Controller (ENIC)

3.12.5.1 Overview

Ethernet Network Interface Controller (ENIC) enables a host to transmit and receive data over Ethernet in compliance with the IEEE 802.3-2015.

3.12.5.2 Features

The device features one ENIC, supporting the following key features:

Standard compliance:

- MII/RMII/RGMII
- IEEE 802.3-2015 for Ethernet MAC
- IEEE 1588-2008 for precision networked clock synchronization
- IEEE 802.1AS-2011 and 802.1-Qav-2009 for Audio Video (AV) traffic
- IEEE 802.1Qbv-2015, 802.1Qbu-2016, and 802.1AS-Rev D5.0 for Time-Sensitive Networking (TSN) traffic
- IEEE 802.3az-2010 for Energy Efficient Ethernet (EEE)

MAC features:

- 10/100/1000 Mbps speed mode
- Half-duplex operation:
 - Support of CSMA/CD protocol

© 2023-2024 MediaTek Inc. All rights reserved.

- Support of flow control using backpressure
 - Full-duplex flow control operation (IEEE 802.3x pause packets and priority flow control)
 - Receive:
- Automatic pad and CRC stripping options
- Preamble and Start Frame Delimiter (SFD) deletion
- Option to disable automatic CRC checking
- Flexible address filtering modes:
 - Up to 31 additional 48-bit destination address filters with masks for each byte
 - Up to 31 x 48-bit source address comparison check with masks for each byte
 - 256-bit hash filter for multicast and unicast destination addresses
 - Option to pass all multicast addressed packets
 - Promiscuous mode to pass all packets without any filtering for network monitoring
- Additional packet filtering:
 - VLAN tag-based: Perfect match and hash-based filtering. Filtering based on either outer or inner VLAN tag is possible.
 - Layer 3 and Layer 4-based: TCP or UDP over IPv4 or IPv6
 - Extended VLAN tag based with 4 filters selection
- Transmit:
 - Automatic pad and CRC generation control ability on a per-packet basis
 - Preamble and start of packet data insertion
 - Programmable packet length to support standard or jumbo Ethernet packets of up to 16 KB
 - Programmable inter packet gap (40-bit to 96-bit times in steps of 8)
 - IEEE 802.3x flow control automatic transmission of zero-quanta pause packet when the flow control input transitions from assertion to de-assertion (in full-duplex mode)
 - Source address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted packets with per-packet or static-global control
 - Insertion, replacement, or deletion of up to two queue/channel-based VLAN tags

MAC Transaction Layer (MTL) features:

- Receive:
 - 16KB RX FIFO and 4 RX queues
- Transmit:
 - 16KB TX FIFO and 4 TX queues
 - Store-and-forward mechanism or threshold mode (cut-through) for transmission to the MAC
 - Calculate and insert IPv4 header checksum and TCP, UDP, or ICMP checksums
 - Scheduling algorithms:
 - Weighted Round Robin (WRR)
 - Strict Priority (SP)
 - Credit-Based Shaper (CBS) when audio-video bridging is enabled

Clause 22 and Clause 45 MDIO master interface for PHY configuration and management

3.12.5.3 Block Diagram

This section provides a block diagram to illustrate the main components and functions of the module. An AXI Master interface is connected to all DMA channels. The DMA arbiter provides help in arbitration of all the paths (Transmit and Receive) in all channels. Each channel has a separate set of Control and Status registers (CSR) for managing the Transmit and Receive functions, descriptor handling, and interrupt handling.

Figure 3-171 Block Diagram of ENIC

3.12.5.4 Function Description

3.12.5.4.1 Functions of IP

AXI Master Interface

The AXI is designed to integrate with AMBA AXI bus on the application side. The AXI transfers the data to and from the system memory through AXI master interface.

APB Slave Interface

The host CPU uses the APB slave interface to access the Control and Status registers (CSRs) of ETHER_QOS.

PHY Interface

ETHER_QOS supports the following PHY interfaces:

- Reduced GMII (RGMII)
- Media Independent Interface (MII)
- Reduced MII (RMII)
- DMA

The DMA has independent TX and RX engines, and a CSR space. The TX engine transfers data from the system memory to the device port (MTL), whereas the RX engine transfers data from the device port to the system memory. The DMA engine uses descriptors to efficiently move data from source to destination with minimal application CPU intervention. The DMA is designed for packet-oriented data transfers such as packets in Ethernet. The DMA controller can be programmed to interrupt the application CPU for situations such as Packet Transmit and Receive Transfer completion, and other normal or error conditions.

The DMA and the application communicate through the following two data structures:

- Control and Status registers (CSR)
- Descriptor lists and data buffers

The DMA supports up to 4 TX and 4 RX Descriptor lists (or DMA channels). The base address of each list is written to the respective TX Descriptor List Address register and RX Descriptor List Address register. The descriptor list is forward linked and the next descriptor is always considered at a fixed offset to the current one. The offset is controlled by the DSL field of DMA_Ch[n]_Control register. The number of descriptors in the list is programmed in the respective TX (or RX) Descriptor Ring Length register. Once the DMA processes the last descriptor in the list, it automatically jumps back to the descriptor in the List Address register to create a descriptor ring. Note that the 4 TX and 4 RX queues can be controlled by multiple CPUs. The application should set access right protection in APMIXED.

The descriptor lists reside in the physical memory address space of the application. Each descriptor can point to a maximum of two buffers in the system memory. This enables two buffers to be used, physically addressed, rather than contiguous buffers in memory.

A data buffer resides in the application physical memory space and consists of an entire packet or part of a packet but cannot exceed a single packet. Buffers only contain data. Buffer status is maintained in the descriptor. Data chaining refers to packets that span multiple data buffers. However, a single descriptor cannot span multiple packets. The DMA skips to the data buffer of the next packet when EOP is detected.

• Transaction Layer (MTL)

The MAC Transaction Layer (MTL) provides the FIFO memory interface to buffer and regulate the packets between the application system memory and the MAC. It also enables the data to be transferred between the application clock and MAC clock domains. The MTL layer has two data paths: Transmit path and Receive path.

• MAC

The MAC supports RGMII/MII/RMII towards the PHY chip. The PHY interface can be selected only once after reset.

3.12.5.5 Theory of Operations

3.12.5.5.1 Ethernet Frame Formats

The IEEE 802.3 standard defines the Ethernet frame format as follows: An Ethernet frame has a minimum length of 64 bytes and a maximum length of 1518 bytes, excluding the preamble and the SFD bytes. An Ethernet frame consists of the following fields:

	1		-1
	7 octets	PREAMBLE	
	1 octet	SFD	
	6 octets	DESTINATION ADDRESS	
	6 octets	SOURCE ADDRESS	
European la martin	2 octets	LENGTH/TYPE	Payload length
Frame length	01500/9000 octets	PAYLOAD DATA	│} ◀–┘
	046 octets	PAD	
	4 octets	FRAME CHECK SEQUENCE	

Figure 3-172 Ethernet Frame Format without VLAN Tag

Optional MAC frames can be VLAN tagged with an additional 4-bytes field (VLAN tag and VLAM info) inserted between the MAC Source Address and the Length/Type Field. VLAN tagging is defined by the IEEE P802.1q specification.

VLAN Tagged Ethernet Frame Format is as follows.

	7 octets	PREAMBLE	
	1 octet	SFD	
	6 octets	DESTINATION ADDRESS	
Frame length	6 octets	SOURCE ADDRESS	
	2 octets	VLAN Tag (0x8100)	length/type field
	2 octets	VLAN info	
	2 octets	LENGTH/TYPE	Payload length
	01500/9000 octets	PAYLOAD DATA	}₄
	042 octets	PAD	-
	4 octets	FRAME CHECK SEQUENCE	

3.12.5.5.2 Pause Frames

The IEEE 802.3 defined pause frame has the following format:

Figure 3-174 Pause Frame Format

There is no Payload Length field found within a pause frame and a pause frame is always padded with 42 bytes (0x00).

If a pause frame with a pause value greater than zero (XOFF Condition) is received, the MAC stops transmitting data as soon as the current frame transfer is completed. The MAC stops transmitting data for the value defined in pause quanta. One pause quanta fraction refers to 512-bit times.

If a pause frame with a pause value of zero (XON Condition) is received, the transmitter is allowed to send data immediately.

3.12.5.5.3 Line Interfaces

The Core implements an MII for 10/100 Mbps, an RMII for 10/100 Mbps, and an RGMII for 10/100/1000 Mbps mode of operation.

3.12.5.5.4 MII for 10M/100M MAC

On Transmit, all data transfers are synchronous to tx_clk rising edge. The MII data enable signal $txen_o$ is asserted to indicate the start of a new frame and remains asserted until the last byte of the frame is present on $txd_o(3:0)$ bus. Between frames, $txen_o$ remains de-asserted.

Figure 3-175 MII Transmit Waveform

If a frame experiences internal errors the frame is subsequently transmitted with the MII mii_txer error signal for one clock cycle at any time during the packet transfer.

Figure 3-176 MII Transmit Waveform with Error Occurring

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

On receive, all signals are sampled on the rx_clk rising edge. The MII data enable signal rxdv_i is asserted by the PHY to indicate the start of a new frame and remains asserted until the last byte of the frame is present on rxd_i(3:0) bus. Between frames, rxdv i remains de-asserted.

Figure 3-177 MII Receive Waveform

If the PHY detects an error on the frame received from the line, the PHY asserts the MII error signal, rxer_i, for at least one clock cycle at any time during the packet transfer.

3.12.5.5.5 RGMII for 10M/100M/1000M

On Transmit for 1000M, all data transfers are synchronous to tx_clk rising edge or tx_clk falling edge. The GMII data enable signal $txen_o$ is asserted to indicate the start of a new frame and remains asserted until the last byte of the frame is present on txd o(3:0) bus. Between frames, txen o remains de-asserted.

Figure 3-178 RGMII Transmit Waveform in 1000M

If a frame experiences internal errors, the frame is subsequently transmitted with $txen_o$ de-asserting synchronous to tx clk rising edge or tx clk falling edge at any time during the packet transfer.

On receive for 1000M, all signals are sampled on rx_clk rising edge or rx_clk falling edge. The RGMII data enable signal rxdv_i is asserted by the PHY to indicate the start of a new frame and remains asserted until the last byte of the frame is present on rxd_i(3:0) bus. Between frames, rxdv_i remains de-asserted.

rx_clk						
rgmii_rxd[3:0]	0	5		XX	XX	$\left \right\rangle$
rgmii_rx_ctl (rxdv_i)						

Figure 3-180 RGMII Receive Waveform in 1000M

If the PHY detects an error on the frame received from the line, the PHY asserts the RGMII error signal, rxdv_i, for at least half clock cycle at any time during the packet transfer.

rx_clk			
rgmii_rxd[3:0] \langle	0	5	
rgmii_rx_ctl (rx_dv_i) _			

Figure 3-181 RGMII Receive Waveform with Error Occurring in 1000M

On Transmit for 10/100M, all data transfers are synchronous to tx_clk rising edge. The GMII data enable signal $txen_o$ is asserted to indicate the start of a new frame and remains asserted until the last byte of the frame is present on $txd_o(3:0)$ bus. Between frames, $txen_o$ remains de-asserted. Note that the frequency of tx_clk is 25M in 100M mode and 2.5M in 10M mode.

tx_clk					
rgmii_txd[3:0]	0	5			
rgmii_tx_ctl (tx_en_o)					

Figure 3-182 RGMII Transmit Waveform in 10/100M

If a frame experiences internal errors, the frame is subsequently transmitted with $txen_o$ de-asserting synchronous to tx clk rising edge or tx clk falling edge at any time during the packet transfer.

tx_clk					
rgmii_txd[3:0]	0	5			
rgmii_tx_ctl (tx_en_o)			_//		

Figure 3-183 RGMII Transmit Waveform with Error Occurring in 10/100M

On receive for 10/100M, all signals are sampled on rx_clk rising edge. The RGMII data enable signal rxdv_i is asserted by the PHY to indicate the start of a new frame and remains asserted until the last byte of the frame is present on rxd_i(3:0) bus. Between frames, rxdv_i remains de-asserted. Note that the frequency of rx_clk is 25M in 100M mode and 2.5M in 10M mode.

rx_clk					
rgmii_rxd[3:0]	0	5			
rgmii_rx_ctl (rxdv_i)					

Figure 3-184 RGMII Receive Waveform in 10/100M

If the PHY detects an error on the frame received from the line, the PHY asserts the RGMII error signal, rxdv_i, for at least half clock cycle at any time during the packet transfer.

rx_clk					
rgmii_rxd[3:0]	O	5			
rgmii_rx_ctl (rxdv_i)					

Figure 3-185 RGMII Receive Waveform with Error Occurring in 10/100M

3.12.5.5.6 RMII for 10/100 MAC

The RMII specification reduces the data interfaces from 4-bit (nibble) data to 2-bit (di-bit) data. In addition, control is reduced to 3 signals and one clock. Thus, the total signal connection is reduced to 8 pins.

The following figure shows the RMII mode connection between a MAC and an RMII Ethernet Transceiver.

Figure 3-186 RMII Signal Connection between PHY and MAC

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

• TX signals:

TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] for transmission. TX_EN shall be asserted synchronously with the first nibble of the preamble and shall remain asserted while all di-bits to be transmitted are presented. The MAC should assert TX_EN negated prior to the first REF_CLK rising edge following the final di-bit of a frame.

TX_EN shall transition synchronously with respect to REF_CLK.

TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0] are accepted for transmission by the PHY.

In 10Mbps operation, as the REF_CLK frequency is 10 times the data rate in 10Mb/s mode, the value on TXD[1:0] must be stable for 10 clocks, allowing the PHY to sample every 10th cycle.

• RX signals:

CRS_DV shall be asserted by the PHY when the receive medium is non-idle. CRS_DV is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode.

The data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchronous relative to REF_CLK, the data on RXD[1:0] shall be "00" until proper receive signal decoding takes place.

The following figure shows CRS_DV formation.

Figure 3-187 RMII Receive Waveform

As the REF_CLK frequency is 10 times the data rate in 10 Mbps mode, the value on RXD[1:0] may be sampled every 10th cycle by the MAC.

3.12.5.5.7 MAC Receive

The MAC receive engine performs the following tasks:

- Check Frame Framing
- Remove Frame preamble and Frame SFD field
- Terminate Pause Frames

- Support 9 (8 of them are optional) configurable DA to check received DA. If not matching, the packet will be dropped.
- Drop processing of oversized frame and short frame.
- Calculate and verify CRC-32
- Write received frames in the Core receive FIFO
- IP and TCP/UDP checksum
- DMA to write packet data from receive FIFO to external memory.
- DMA interface transfer to AXI
- 1. Preamble Processing

MAC Core checks for the start frame delimiter (SFD) byte. Before the SFD, a 0- to 7-byte preamble is acceptable. The following shows cases of no preamble and odd preamble.

Figure 3-189 Odd Preamble Case

2. Frame Length/Type Verification

The NIC does not check the correction of length field. An internal counter is used to calculate frame length. If calculated length < 64 bytes, then drop as a runt packet. If calculated length > 1518 (or 1522, 1536, by configuration), then assert oversize indication in frame information and this packet will be optionally dropped in DMA.

Control and VLAN frames (Frame Length/Type field 0x8808 and 0x8100 respectively) are processed by the Core as described in the two following sections.

The NIC supports 802.1q tag-based VLAN ingress check, and it can support up to 4 VLANs, set in registers, where these VLAN IDs can be any in 4K VLAN space. Internally, the controller uses 4 bits of "My VLAN ID Control Register" to enable VLAN ingress check for each pre-defined VLAN ID. When at least one of the pre-defined VLAN ID is enabled, RX MAC will compare the pre-defined VLAN ID with the tagged VID of the received packet. If one of them is matched,

the packet will be received; otherwise, it will be dropped, and the relevant MIB counter will be increased by 1 accordingly.

Please note that VLAN ingress check has no effect on non-VALN tagged packets. When a received packet is VLANtagged, the tag can be stripped from the packet or retained with the packet. No matter VLAN tag is stripped or not, the VLAN tag information will be stamped at RX Descriptor.

3. Pause Frame Processing

Pause frames are not transferred to the receive FIFO.

A pause frame is valid only if all the following conditions are valid:

- Length/Type is set to 0x8808
- The Opcode immediately following the Length/Type field is 0x0001
- The frame MAC destination address is either the configured unicast address (Registers MAC_ADDR_0 and MAC_ADDR_1) or the control frame multicast address 01-80-c2-00-00-01
- The frame has a valid CRC
- The frame has a length of 64 octets

Check if the received packet is a pause frame and generate a signal to pause TX (pause_tx) when receiving a pause frame.

4. CRC

The CRC-32 field is always checked in the received side. The CRC polynomial, as specified in the 802.3 Standard, is: $FCS(X) = X_{32} + X_{26} + X_{23} + X_{22} + X_{16} + X_{12} + X_{11} + X_{10} + X_{8} + X_{7} + X_{5} + X_{4} + X_{2} + X_{1} + 1$

The 32 bits of the CRC value are placed in the FCS field so that the X31 term is the right-most bit of the first octet. The CRC bits are thus received in the following order: X31, X30,..., X1, X0.

If a CRC-32 error is detected, the frame is marked invalid and the frame status bit 1 indicating a CRC error is set to "1".

5. Frame Padding

In receive, the MAC does not remove the padding octets even if the Payload length is less than 46 bytes (42 bytes for VLAN tagged frames)

6. Frame Truncation

Since NIC does not do length field checking, so that function of frame truncation is not implemented.

7. Hash Table

A 256-bit Hash table is implemented for multicast and unicast addresses filter function. It operates as follows. First, on receiving a multicast MAC address frame, it calculates a 8-bit Hash Value from destination MAC address of the frame.

Next, it compares the calculated Hash Value with the SelectBit_n(n = 0 to 255) references of the MAC Address Hash Filter Table.

Last, it decides whether to forward the frame to memory or to deny it. If a Hash Value of RX frame MAC address becomes n and the SelectBit_n is 0, the RX frame is denied. Otherwise, if the SelectBit_n is 1, the RX frame is forwarded to memory.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

The Hash Value results are aggregated form CRC32 calculation from when CRC32 is used in the following generator polynomial to degenerate the destination MAC address (48 bits).

Generator Polynomial: = x32+ x26+ x 23+ x22+ x16+ x12+ x11+ x10+ x8+ x7+ x5+ x4+ x2+ x1+ 1

The 8-bit hash value can be generated from reversed CRC {r_crc[31],r_crc[30],r_crc[29],r_crc[28],r_crc[27],r_crc[2],r_crc[1],r_crc[0]}

The following shows a 256-bit hash table and the process of hash value generation.

for DMAC

Figure 3-190 Hash Table Set

Figure 3-191 Hash Table Control Flow Chart

Figure 3-192 Hash Value Calculation

8. Magic Packet Detection

Wake-on-LAN ("WOL") is implemented using a specially designed packet called a magic packet.

The magic packet is a broadcast frame containing anywhere within its payload 6 bytes of all 255 (FF FF FF FF FF FF in hexadecimal), followed by sixteen repetitions of the target computer's 48-bit MAC address, for a total of 102 bytes.

When Wake-on-LAN is enabled, TX MAC powers down and RX MAC only scans Magic Packet and does not forward any packet to the system memory. After detecting the Magic Packet, MAC asserts an WOL interrupt to the CPU and wakes up the CPU accordingly.

3.12.5.5.8 MAC Transmit

Ethernet Frame transmission starts when the Transmit FIFO holds enough data. Once a transfer has started, the transmit engine performs the following tasks:

- Convert word to byte
- Generate Preamble and SFD field before Frame transmission
- When in Link Pause Mode, generate Pause frames if the Receive FIFO reports a congestion or if the pause generation pin back_pressure on gtx_main is asserted

- When in Link Pause Mode, suspend Ethernet Frame transfer (XOFF) if a non-zero Pause Quanta is received from the MAC receive path (optional)
- Calculate and replace CRC-32 to the transmitted frame (optional)
- Send Frames with correct Inter-Packet Gap (IPG)

1G/100M/10M mode default stop TX when link status of PHY is deasserted.

The following figure shows the TX transmit flow chart.

Figure 3-193 Transmit Flow Chart

3.12.5.6 Signal Descriptions

Table 3-137 presents ENIC signal descriptions.

Table 3-137 ENIC Signal Descriptions

Signal Name	Туре	Description	Ball Location
ENIC Receive Data	Bus—GBE	_RXD[3:0]	
GBE_RXD0	DI	Gigabit Ethernet RX data 0	AB7
GBE_RXD1	DI	Gigabit Ethernet RX data 1	AC8
GBE_RXD2	DI	Gigabit Ethernet RX data 2	AA8
GBE_RXD3	DI	Gigabit Ethernet RX data 3	AB3
ENIC Transmit Data	Bus—GB	E_TXD[3:0]	
GBE_TXD0	DO	Gigabit Ethernet TX data 0	AC4
GBE_TXD1	DO	Gigabit Ethernet TX data 1	AB8
GBE_TXD2	DO	Gigabit Ethernet TX data 2	AC9
GBE_TXD3	DO	Gigabit Ethernet TX data 3	AB9
ENIC Command, Sta	atus, Cloc	k and Interrupt Signals	
GBE_COL	DI	Gigabit Ethernet collision detected	AD11
GBE_INTR	DI	Gigabit Ethernet interrupt from external PHY	AD10
GBE_RXC	DI	Gigabit Ethernet RX clock	AB5
GBE_RXDV	DI	Gigabit Ethernet RX data valid	AC5
GBE_RXER	DI	Gigabit Ethernet RX error	AB4
GBE_TXC	DIO	Gigabit Ethernet TX clock	AB6
GBE_TXEN	DO	Gigabit Ethernet TX data valid	AA5
GBE_TXER	DO	Gigabit Ethernet TX error	AC7
ENIC Management	Bus		
GBE_MDC	DO	Gigabit Ethernet MDC	AA6
GBE_MDIO	DIO	Gigabit Ethernet MDIO	AC6
Ethernet Auxiliary	Snapshot	and Pulse-Per-Second Signal	
GBE_AUX_PPS0	DIO	Ethernet Auxiliary Snapshot Input 0 / Pulse-Per-Second Output 0	AB2
GBE_AUX_PPS1	DIO	Ethernet Auxiliary Snapshot Input 1 / Pulse-Per-Second Output 1	AB1
GBE_AUX_PPS2	DIO	Ethernet Auxiliary Snapshot Input 2 / Pulse-Per-Second Output 2	AC7
GBE_AUX_PPS3	DIO	Ethernet Auxiliary Snapshot Input 3 / Pulse-Per-Second Output 3	AB4

3.12.5.7 ENIC Timing Characteristics

Table 3-138 and Figure 3-194 present timing characteristics for the ENIC MII in the device.

No.	Parameter		Min	Тур	Max	Unit
MII1	tc_txc_rxc	Cycle time, TXC/RXC		40		ns
MII2	t _{d_TX}	Delay time, transmission			9.764	ns
MII3	t _{d_TXC}	Delay time, TXC	1.323		2.273	ns

Table 3-138 ENIC MII Timing Characteristics

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

No.	Parameter		Min	Тур	Max	Unit
MII4	t_{d_TXD}	Delay time, TXD/TXEN/TXER	4.149		7.491	ns
MII5	$t_{d_{RXC}}$	Delay time, RXC	1.514		2.654	ns
MII6	td_RXD	Delay time, RXD/RXDV/RXER	2.041		4.021	ns
MII7	t _{su_RX}	Setup time, RXD/RXDV/RXER	3.507			ns
MII8	t _{h_RX}	Hold time, RXD/RXDV/RXER	0.473			ns
	D	Duty cycle, TXC/RXC	40	50	60	%
MII10	trise	Rise time, TXC/RXC (20% ~ 80%)			0.75	ns
MII11	t _{FALL}	Fall time, TXC/RXC (20% ~ 80%)			0.75	ns

Figure 3-194 ENIC MII Timing Diagram

Table 3-139 and Figure 3-195 ENIC RMII Timing Diagram present timing characteristics for the ENIC RMII in the device.

No. RMII1	Parameter		Min	Тур	Max	Unit
	tc_refclk	Cycle time, REFCLK		20		ns
RMII2	t _{d_Tx}	Delay time, transmission			7.235	ns
RMII3	td_TXC	Delay time, REFCLK (when transmitting)	1.144		2.2	ns
RMII4	td_txd	Delay time, TXD/TXEN	2.8		5.035	ns
RMII5	td_RXC	Delay time, REFCLK (when receiving)	1.798		3.071	ns
RMII6	td_RXD	Delay time, RXD/RXDV	1.925		3.469	ns
RMII7	t _{su_RX}	Setup time, RXD/RXDV	2.671			ns
RMII8	th_RX	Hold time, RXD/RXDV	0.873			ns
	D	Duty cycle, REFCLK	45	50	55	%
RMII10	trise	Rise time, REFCLK (20%~80%)			0.75	ns
RMII11	tFALL	Fall time, REFCLK (20%~80%)			0.75	ns

Table 3-139 ENIC RMII Timing Characteristics

MEDIATEK

Figure 3-195 ENIC RMII Timing Diagram

Table 3-140 and Figure 3-196 ENIC RGMII Timing Diagram present timing characteristics for the ENIC RGMII in the device.

No.	Parameter		Min	Тур	Max	Unit
RGMII1	t _{TXC_RXC}	Cycle time, TXC/RXC (10M/100M/1000M)		400/40/8		ns
RGMII2	t _{d_Tx}	Delay time, transmission			4.1 + K ⁽¹⁾	ns
RGMII3	t _{d_TXC}	Delay time, TXC	3.489		8.169	ns
RGMII4	t _{d_TXD}	Delay time, TXD/TX_CTL	4.141		7.491	ns
RGMII5	t _{d_RXC}	Delay time, RXC	1.998		3.575	ns
RGMII6	t _{d_RXD}	Delay time, RXD/RX_CTL	1.913		3.548	ns
RGMII7	t _{su_RX}	Setup time, RXD/RX_CTL	2.55 - Q ⁽²⁾			ns
RGMII8	th_RX	Hold time, RXD/RX_CTL	1.085 + Q ⁽²⁾			ns
	D	Duty cycle, TXC/RXC (1000M)	45	50	55	%
		Duty cycle, TXC/RXC (10M/100M)	40	50	60	%
RGMII10	t _{RISE}	Rise time, TXC/RXC (20%~80%)			0.75	ns
RGMII11	t _{FALL}	Fall time, TXC/RXC (20%~80%)			0.75	ns

Table 3-140 ENIC RGMII Timing Characteristics

(1) K is programmable MAC internal delay (32-levels). The maximum delay is from 12.6001 ns to 28.5724 ns.

(2) Q is programmable MAC internal delay (32-levels). The maximum delay is from 12.6001 ns to 28.5724 ns.

Figure 3-196 ENIC RGMII Timing Diagram

Table 3-141 and Figure 3-197 present timing characteristics for the ENIC MDIO in the device.

No.	Parameter		Min	Тур	Max	Unit
MDI01	t _{c_MDC}	Cycle time, MDC	400			ns
MDIO2	t _{d_MDO}	Delay time, MDIO output		MDIO4 -		ns
WIDIO2				MDIO3		115
MDIO3	td_MDC	Delay time, MDC	3.631		9.043	ns
MDIO4	$t_{d_MDO_MAC}$	Delay time, MDIO output (MAC to PHY)	4.804		11.479	ns
MDIO5	td_MDI	Delay time, MDIO input	1.92		4.203	ns
MDIO6	t _{su_MDI}	Setup time, MDIO input	1 + MDIO5 +			ns
			MDIO3			
MDIO7	t _{h_MDI}	Hold time, MDIO input	1 - MDIO5 -			ns
			MDIO3			115

Table 3-141 ENIC MDIO Timing Characteristics

Figure 3-197 ENIC MDIO Timing Diagram

3.12.5.8 Programming Guide

Initializing DMA

Complete the following steps to initialize the DMA:

- 1. Provide a software reset. This resets all of the MAC internal registers and logic. (bit 0 of DMA_Mode).
- 2. Wait for the completion of the reset process (poll bit 0 of the DMA_Mode, which is only cleared after the reset operation is completed).
- 3. Program the following fields to initialize the DMA_SysBus_Mode Register:
 - a. AAL
 - b. Fixed burst or undefined burst
 - c. Burst mode values in the case of the AHB interface, OSR_LMT in the case of the AXI bus interface.
 - d. If fixed length value is enabled, select the maximum burst length possible on the AXI bus (bits [7:1])
- 4. Create a descriptor list for TX and RX. In addition, ensure that the RX descriptors are owned by DMA (set bit 31 of descriptor TDES3/RDES3).
- 5. Program the TX and RX Ring length registers (DMA_CH(#i)_TxDesc_Ring_Length (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1) and DMA_CH(#i)_RxDesc_Ring_Length (for i = 0; i <= DWC EQOS NUM DMA RX CH-1)). The ring length must be programmed to at least 4.</p>
- 6. Initialize RX and TX descriptor list addresses with the base address of the TX and RX descriptor (DMA_CH(#i)_TxDesc_List_Address (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1), DMA_CH(#i)_RxDesc_List_Address (for i = 0; i <= DWC_EQOS_NUM_DMA_RX_CH-1)). Also, program the TX and RX tail pointer registers indicating to the DMA about the available descriptors (DMA_CH(#i)_TxDesc_Tail_Pointer (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1) and DMA_CH(#i)_RxDesc_Tail_Pointer (for i = 0; i <= DWC_EQOS_NUM_DMA_RX_CH-1)).
- 7. Program the settings of the following registers for the parameters like maximum burst-length (PBL) initiated by DMA, descriptor skip lengths, OSP in the case of TxDMA, RBSZ in the case of RxDMA, and so on:
 - DMA_CH(#i)_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1)</p>
 - DMA_CH(#i)_TX_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1)</p>
 - DMA_CH(#i)_RX_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_RX_CH-1)</p>
- Enable the interrupts by programming the DMA_CH(#i)_Interrupt_Enable (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1) register.
- 9. Start the RX and TX DMAs by setting SR (bit 0) of the DMA_CH(#i)_RX_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_RX_CH-1) and ST (bit 0) of the DMA_CH(#i)_TX_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1) register to 10. Repeat steps 4 to 9 for all the TX DMA and RX DMA selected channels in the hardware.</p>
- 10. Repeat steps 4 to 9 for all the TX DMA and RX DMA channels selected in the hardware.

Initializing MTL Registers

Complete the following steps to initialize the MTL Registers:

- 1. Program the TX Scheduling (SCHALG) and Receive Arbitration Algorithm (RAA) fields in MTL_Operation_Mode to initialize the MTL operation in the case of multiple TX and RX queues.
- 2. Program the RX Queue to DMA mapping in MTL_RxQ_DMA_Map0 and MTL_RxQ_DMA_Map1 registers.
- 3. Program the following fields to initialize the mode of operation in the MTL_TxQ0_Operation_Mode register
 - a. Transmit Store And Forward (TSF) or Transmit Threshold Control (TTC) in the case of threshold mode
 - b. Transmit Queue Enable (TXQEN) to value 2'b10 to enable Transmit Queue0

MEDIATEK

- c. Transmit Queue Size (TQS)
- 4. Program the following fields to initialize the mode of operation in the MTL_RxQ0_Operation_Mode register:
 - a. Receive Store and Forward (RSF) or RTC in the case of Threshold mode
 - b. Flow Control Activation and De-activation thresholds for MTL Receive FIFO (RFA and RFD)
 - c. Enable Error Packet and undersized good Packet forwarding (FEP and FUP)
 - d. Receive Queue Size (RQS)
- 5. Repeat previous two steps for all MTL TX and RX queues selected in the configuration
- Initializing MAC

The following MAC initialization operations can be performed after DMA initialization. If the MAC initialization is completed before the DMA is configured, enable the MAC RX (last step in the following sequence) only after the DMA is active. Otherwise, received frames will fill in the RX FIFO and overflow.

- 1. Provide the MAC address registers: MAC_Address0_High and MAC_Address0_Low. If more than one MAC address is enabled in your configuration (during configuration in the coreConsultant), program the MAC addresses appropriately.
- 2. Program the following fields to set the appropriate filters for the incoming frames in the MAC_Packet_Filter register:
 - a. Receive All
 - b. Promiscuous mode
 - c. Hash or Perfect Filter
 - d. Unicast, multicast, broadcast, and control frames filter settings
- 3. Program the following fields for proper flow control in the MAC_Q0_Tx_Flow_Ctrl register:
 - a. Pause time and other Pause frame control bits
 - b. Transmit Flow control bits
 - c. Flow Control Busy
- 4. Program the MAC_Interrupt_Enable register as required, and if applicable, for your configuration.
- 5. Program the appropriate fields in the MAC_Configuration register, for example, Inter-packet gap, while transmission and jabber are disabled.
- 6. Set bits 0 and 1 in MAC_Configuration registers to start the MAC TX and RX.
- Performing Normal Receive and Transmit Operation For normal operation, complete the following steps:
 - 1. For normal TX and RX interrupts, read the interrupt status. Then, poll the descriptors, reading the status of the descriptor owned by the Host (either TX or RX).
 - 2. Set appropriate values for the descriptors, ensuring that TX and RX descriptors are owned by the DMA to resume the transmission and reception of data.
 - If the descriptors are not owned by the DMA (or no descriptor is available), the DMA goes into the SUSPEND state. The transmission or reception can be resumed by freeing the descriptors and writing the descriptor tail pointer to TX/RX tail pointer register (DMA_CH[n]_TxDesc_Tail_Pointer and DMA_CH[n]_RxDesc_Tail_Pointer).
 - 4. The values of the current host TX or RX descriptor address pointer can be read for the debugging process (DMA_CH[n]_Current_App_TxDesc and DMA_CH[n]_Current_App_RxDesc).
 - 5. The values of the current host transmit buffer address pointer and receive buffer address pointer can be read for the debugging process (Register DMA_CH[n]_Current_App_TxBuffer and DMA_CH[n]_Current_App_RxBuffer).

Stopping and Starting Transmission

Complete the following steps to pause the transmission for some time:

- Disable the TX DMA (if applicable) by clearing Bit 0 (ST) of DMA_CH(#i)_TX_Control (for i = 0; i <= DWC_EQOS_NUM_DMA_TX_CH-1) Register.
- 2. Wait for all the previous frame transmissions to complete. Check this by reading the appropriate bits of MTL_TxQ0_Debug Register (TRCSTS is not 01 and TXQSTS=0).
- 3. Disable the MAC TX and MAC RX by clearing Bit (RE) and Bit 1 (TE) of the MAC_Configuration Register.
- 4. Disable the RX DMA (if applicable) after making sure that the data in the RX FIFO is transferred to the system memory (by reading the appropriate bits of MTL_TxQ0_Debug Register, PRXQ=0 and RXQSTS=00).
- 5. Make sure that both TX Queue and RX Queue are empty (TXQSTS is 0 in MTL_TxQ0_Debug Register and RXQSTS is 0 in MTL_RxQ0_Debug Register).
- 6. To restart the operation, first start the DMAs, and then enable the MAC TX and RX.
- Programming Guidelines for Multi-Channel Multi-Queuing
 - Transmit
 - 1. Program the TX queue size in the TQS field of MTL_TxQ[n]_Operation_Mode register. The size of the queue is determined based on the value programmed in TQS field. In the Transmit operation, the number of channels is equal to the number of the queues. For this reason, the Channel to Queue mapping is fixed.
 - For a queue to be used, the queue needs to be enabled in TXQEN in the corresponding MTL_TxQ[n]_Operation_Mode Register. In DMA configurations, ST bit of DMA_CH[n]_Tx_Control Register and the corresponding TXQEN in MTL_TxQ[n]_Operation Mode Register need to be enabled.
 - 3. The scheduling method needs to be programmed in SCHALG of MTL_Operation_Mode register.
 - 4. Program the MTL_TxQ[n]_Quantum_Weight for generic or DCB queue as per the selected algorithm. In case of CBS algorithm in AVB queues, the MTL_TxQ[n]_ETS_Control, MTL_TxQ[n]_SendSlopeCredit, MTL_TxQ[n]_HiCredit and MTL_TxQ[n]_LoCredit registers also need to be programmed as required.
 - 5. If DCB is enabled and PFC function is required, program MAC_TxQ_Prty_Map0 Register to assign a fixed priority to the queue. This assigned priority is used to determine whether the corresponding queue should stop transmitting packet based on the received PFC packet.
 - Receive
 - 1. Program the Receive queue size in the RQS field of MTL_RxQ[n]_Operation_Mode Register. Based on the value programmed in RQS field, the size of the queue is determined.
 - Enable the Receive Queues 0 to 7 in the fields RXQ0EN to RXQ7EN in MAC_RxQ_Ctrl0 Register for AV or DCB. In DMA configurations, SR bit of statically or dynamically mapped DMA_CH[n]_Rx_Control Register and corresponding RXQ[n]_EN in MAC_RxQ_Ctrl0 Register needs to be enabled.
 - 3. The MAC routes the RX packets to the RX Queues based on following packet types:
 - a. AV PTP Packets: Based on the programming of AVPTPQ in MAC_RxQ_Ctrl1 Register.
 - b. AV Untagged Control packets: Based on the programming of AVCPQ in MAC_RxQ_Ctrl1 Register.
 - c. Data Center Bridging (DCB) related Link Layer Discovery Protocol (LLDP) packets. Program DCBCPQ in MAC_RxQ_Ctrl1 Register to indicate to MAC which queue should get the DCB packets.

MEDIATEK

- d. VLAN Tag Priority field in VLAN Tagged packets: Program PSRQ7-0 of the MAC_RxQ_Ctrl2 and MAC_RxQ_Ctrl3 Register for the routing of tagged packets based on the USP (user Priority) field of the received packets to the RX Queues 0 to 7.
- e. The AV tagged control and data packets are also routed based on PSRQ field of the MAC_RxQ_Ctrl2 and MAC_RxQ_Ctrl3 registers.
- 4. If multiple RX DMA channels are enabled, the following programming should be done for proper arbitration and mapping:
 - a. Program the RAA field of MTL_Operation_Mode register to select the arbitration algorithm to decide which RxQ is read out from the RxFIFO memory.
 - b. Program the MTL_RxQ[n]_Control to decide the weights and the packet arbitration for each RxQ.
 - c. If static mapping is programmed in MTL_RxQ_DMA_Map[n] register (RXQ[n]DADMACH is reset to 0), bits RXQx2DMA and others need to be programmed to select the channel for which each queue is mapped.
 - d. Set RXQ[n]DADMACH bit in MTL_RxQ_DMA_Map0 Register to select dynamic mapping of packets in each RxQueue.
 - e. In dynamic channel mapping, the routing of a packet to a specific RxDMA channel is decided by the value of DCS field in the lowest MAC Address Register.
- Programming Guidelines for IEEE 1588 Timestamping
 - Initialization Guideline for System Time Generation

You can enable the timestamp feature by setting Bit 0 of the MAC_Timestamp_Control Register. However, it is essential that the timestamp counter should be initialized after this bit is set. Complete the following steps during DWC_ether_qos initialization:

- 1. Mask the Timestamp Trigger interrupt by clearing Bit 16 of MAC_Interrupt_Enable Register.
- 2. Set Bit 0 of MAC_Timestamp_Control Register to enable timestamping.
- 3. Program MAC_Sub_Second_Increment Register based on the PTP clock frequency.
- 4. If the Fine Correction approach is used, program MAC_Timestamp_Addend and set Bit 5 of the MAC_Timestamp_Control Register.
- 5. Poll the MAC_Timestamp_Control Register until Bit 5 is cleared.
- 6. Program Bit 1 of MAC_Timestamp_Control Register to select the Fine Update method (if required).
- 7. Program MAC_System_Time_Seconds_Update Register and MAC_System_Time_Nanoseconds_Update Register with the appropriate time values.
- 8. Set Bit 2 in MAC_Timestamp_Control Register. The timestamp counter starts operation as soon as it is initialized with the value written in the Timestamp Update registers. If one-step timestamping is enabled:
 - a. To enable one-step timestamping, program Bit 27 of the TDES3 Context Descriptor.
 - b. Program registers MAC_Timestamp_Ingress_Asym_Corr and MAC_Timestamp_Egress_Asym_Corr to update the correction field in PDelay_Req PTP messages.
- 9. Enable the MAC RX and TX for proper timestamping.
- System Time Correction

To synchronize or update the system time in one process (coarse correction method), complete the following steps:

- 1. Set the offset (positive or negative) in the Timestamp Update registers (MAC_System_Time_Seconds_Update and MAC_System_Time_Nanoseconds_Update).
- 2. Set Bit 3 (TSUPDT) of the MAC_Timestamp_Control Register. The value in the Timestamp Update registers is added to or subtracted from the system time when the TSUPDT bit is cleared.

To synchronize or update the system time to reduce system-time jitter (fine correction method), complete the following steps:

- 1. With the help of the algorithm explained in "System Time Register Module", calculate the rate by which you want to make the system time increment slower or faster.
- 2. Update the MAC_Timestamp_Addend with the new value and set Bit 5 of the MAC_Timestamp_Control Register.
- 3. Wait for the time for which you want the new value of the Addend register to be active. You can do this by enabling the Timestamp Trigger interrupt after the system time reaches the target value.
- 4. Program the required target time in MAC_PPS[n]_Target_Time_Seconds Register and MAC_PPS[n]_Target_Time_Nanoseconds Register.
- 5. Enable the Timestamp interrupt in bit 12 of MAC_Interrupt_Enable register.
- 6. Set Bit 4 in Register MAC_Timestamp_Control.
- 7. When this trigger causes an interrupt, read MAC_Interrupt_Status Register.
- 8. Reprogram MAC_Timestamp_Addend Register with the old value and set Bit 5 again.

3.12.6 Peripheral Component Interconnect Express (PCIe) Controller

3.12.6.1 **Overview**

The PCIe controller adheres to the Intel[®] PIPE (PHY interface for the PCIe) interface, facilitating seamless integration with PIPE-compliant PHY. Moreover, the controller conforms to the AMBA[®] AXI4 specifications. It supports differential bus speeds of PCIe Gen1 (2.5 Gbps), PCIe Gen2 (5.0 Gbps).

3.12.6.2 Features

- Supports Root Complex (RC) mode
- Supports x1 link
- Supports link rate of 2.5 GT/s, 5.0 GT/s
- PCIe Base Specification Revision 3.0 compliant
- PIPE 4.0 compliant
- Supports memory, I/O, configuration, and message transactions.
- Supports maximum payload size: 256 bytes
- Supports maximum read request size: 256 bytes
- Supports 1 VC (Virtual Channel)
- AER (Advanced Error Reporting)
- ECRC (End to End Cycle Redundancy Check) generation and check support
- Lane reversal
- Polarity inverse

- Legacy PCI power management
- Native ASPM (Active State Power Management) LOs and L1 states
- L1PMSS (L1 Power Management Substates) with CLKREQ#
- LTR (Latency Tolerance Reporting)
- MSI (Message Signaled Interrupt) per function up to 32 and INT x (legacy interrupts)
- AHB and AXI interfaces:
 - 1 AHB slave interface for bridge configuration
 - 1 AXI master interface, supporting outstanding requests write (10)/read (12)
 - 1 AXI slave interface, supporting outstanding requests write (4)/read (6)
 - 128-bit data support for AXI master and slave interfaces

3.12.6.3 Block Diagram

The PCIe consists of 4 different layers: PCIe layer, Bridge layer, AXI layer and Physical layer, as depicted in the figure below.

Figure 3-198 Block Diagram of PCIe Controller

Layer	Components							
	A PCIe controller, which is a PCIe core IP							
DCIa lavar	A PCIe TX/RX interface between the bridge and the PCIe controller							
PCIe layer	A PCIe configuration interface to give the bridge layer access to the PCIe configuration space							
	• A PCIe misc. interface to allow the bridge to manage low-power, interrupts, etc.							
	The internal registers of the PCIe controller							
Bridge layer	Address translator modules to convert between the AXI and PCIe interfaces							
Bridge layer	When transferring PCIe received requests to the AXI master, the address translator adds the							
	corresponding AXI base address and forwards the request to the desired AXI master interface							

© 2023-2024 MediaTek Inc. All rights reserved.

Layer	Components						
	The address translation method is similar when transferring AXI receive requests to the PCIe						
	interface						
	An interconnect module to interconnect and arbitrate between input and output flow						
	An AXI master interface, which manages requests and completions from the bridge layer to AXI						
AXI layer	• An AXI slave interface, which manages requests and completions from AXI to the bridge layer						
	An AHB or APB slave interface for bridge configuration						
Physical layer	Refer to Section 3.12.6.9						

3.12.6.4 Function Description

3.12.6.4.1 I/O TLP (Transaction Layer Packet) Transfer

3.12.6.4.1.1 Transmitting I/O TLP

When operating in root port mode, the PCIe controller enables the local processor to send an I/O request TLP via the AXI4 slave interface by configuring the address translation table appropriately.

- In cases where the target address of a write request from the AXI slave matches the address translation table for I/O TLP, the PCIe controller will transmit an I/O write TLP.
- Similarly, if the target address of a read request from the AXI slave matches the address translation table for I/O TLP, the PCIe controller will transmit an I/O read TLP.

Figure 3-199 RC Send I/O TLP Flow

	For AXI slave0 Table0: 0x0800 to 0x081F								
Offset	Register Name	gister Name Bit Location Action Value		Value	Description				
0x800	ATR_IMPL	[0]	W	1'b1	The table is enabled.				
	ATR_SIZE	[6:1]	W	6'd19	Table Size is 2^ (19+1) = 1MB				
	SRC_ADDR_LSB	[31:12]	w	20'b0	SRC_ADDR[ATR_SIZE:0] will be ignored to align the Table size				
0x804	SRC_ADDR_MSB	[31:0]	W	32'hCCCCCCCC	Any AXI address in 0xCCCCCCC_00000000 to 0xCCCCCCC_000FFFFF range will match table0.				
0x808	TRSL_ADDR_LSB	[31:12]	w	20'h05500	AXI address matching the table will be translated to IO Requested TLP with address 0x05500000 to 0x055FFFFF				
0x80C	TRSL_ADDR_MSB	[31:0]	W	32'h0	The IO TLP does not need high 32-bit translated address.				
0x810	TRSL_ID	[3:0]	W	4'd1	To the PCIe IO interface				
	TRSF_PARAM	[18:16]	W	3'd2	IO TLP				
	TRSF_PARAM	[19]	W	1'b0	NW flag is 0				
	TRSF_PARAM	[22:20]	W	3'b0	No snoop				
	TRSF_PARAM	[23]	W	1'b0	ECRC is not forwarded.				
	TRSF_PARAM	[26:24]	W	3'b0	TC is 0.				

Table 3-143 RC Set Address Translation Table for I/O TLP Example

3.12.6.4.2 Message TLP Transfer

The local processor is capable of transmitting message TLP via the AXI4 slave interface by configuring the address translation table accordingly. Once the PCIe controller receives a specific message TLP, it will notify the local processor via an *interrupt.Transmitting* message TLP.

3.12.6.4.2.1 Original Message Mechanism

In the default PLDA mode, the local processor sends a message via an AXI slave transaction, which is equivalent to a full message TLP. This includes the 4DW header that specifies the message code and routing information, as well as the payload if the message TLP contains data.

For instance, if the AXI slave transaction contains 12DW data, the first 4DW is the message header, while the last 8DW is reserved for message data. The local processor must ensure that the contents are properly prepared, including header format, message code, and message payload, within the 12DW data from the AXI slave.

Figure 3-200 Transmit Message TLP Flow

Table 3-144 ADT Setting Example for	r Transmit Message TLP
-------------------------------------	------------------------

	For AXI slave0 Table0: 0x0800 to 0x081F								
Offset	Register Name	Bit Location	Action	Value	Description				
0x800	ATR_IMPL	[0]	W	1'b1	The table is enabled				
	ATR_SIZE	[6:1]	W	6'd11	Table Size is 2 [^] (11+1) =4KB				
	SRC_ADDR_LSB	[31:12]	w	20'b0	SRC_ADDR[ATR_SIZE:0] will be ignored to align the table size				
0x804	SRC_ADDR_MSB	[31:0]	w	32'hDDDDDDDD	Any AXI address in 0xDDDDDDD_00000000 to 0xDDDDDDD_00000FFF range will match table0.				
0x808	TRSL_ADDR_LSB	[31:12]	w	20'h0	Message TLP does not need translated address				
0x80C	TRSL_ADDR_MSB	[31:0]	w	32'h0	Message TLP does not need translated address				
0x810	TRSL_ID	[3:0]	W	4'd0	To PCIe TX/RX interface				
	TRSF_PARAM	[18:16]	W	3'd4	Message TLP				
	TRSF_PARAM	[19]	W	1'b0	NW flag is 0				
	TRSF_PARAM	[22:20]	W	3'b0	No snoop				
	TRSF_PARAM	[23]	W	1'b0	ECRC is not forwarded				
	TRSF_PARAM	[26:24]	W	3'b0	TC is 0				

3.12.6.4.2.2 Message Pool Mechanism

In the message pool mode, the local processor sends a message, and the PCIe controller can aggregate several AXI slave transactions to form a complete Message TLP if those transactions match the Address Translation Table for Message. In this mode, the maximum length for a Message TLP is 8DW, including the 4DW header and a maximum of 4DW data.

For instance, suppose the local processor intends to send a message TLP with a length of 6DW, but a single AXI slave transaction contains a maximum of 2DW. In that case, the local processor can activate the message pool mode register and issue three AXI transactions, each with a length of 2DW, to transmit a 6DW message TLP.

Figure 3-201 Transmit Message TLP by Message Pool Mode

Offset	Register Name	Bit Location	Action	Value	Description				
	For AXI slave0 Table0: 0x0800 to 0x081F								
0x800	ATR_IMPL	[0]	W	1'b1	The table is enabled				
	ATR_SIZE	[6:1]	W	6'd11	Table Size is 2^ (11+1) =4KB				
	SRC_ADDR_LSB	[31:12]	W	20'b0	SRC_ADDR[ATR_SIZE:0] will be ignored to align the Table size				
0x804	SRC_ADDR_MSB	[31:0]	w	32'hDDDDDDDD	Any AXI address in 0xDDDDDDDD_00000000 to 0xDDDDDDDD_00000FFF range will match table0.				
0x808	TRSL_ADDR_LSB	[31:12]	W	20'h0	Message TLP does not need translated address				
0x80C	TRSL_ADDR_MSB	[31:0]	W	32'h0	Message TLP does not need translated address				
0x810	TRSL_ID	[3:0]	W	4'd0	To PCIe TX/RX interface				
	TRSF_PARAM	[18:16]	W	3'd4	Message TLP				
	TRSF_PARAM	[19]	W	1'b0	NW flag is 0				
	TRSF_PARAM	[22:20]	W	3'b0	No snoop				
	TRSF_PARAM	[23]	W	1'b0	ECRC is not forwarded				
	TRSF_PARAM	[26:24]	W	3'b0	TC is 0				
	For Message Pool Register: 0x01A8								

Table 3-145 ADT Setting Example for Message Pool Mode

© 2023-2024 MediaTek Inc. All rights reserved.

Page 294 of 472

Offset	Register Name	Bit Location	Action	Value	Description
0x1A8	MSG_POOL_EN	[4]	W	1'b1	Enable Message Pool mode
	MSG_POOL_DLEN	[7:5]	W	3'd2	Message Data Payload length is 2DW and total length is 4DW+2DW = 6DW

3.12.6.4.2.3 Receiving Message TLP

The system can transmit incoming messages from the PCIe interface to either an internal register or an AXI master, depending on the message type and reception message register settings. To activate this message forwarding functionality, the software must properly configure the "PMSG_RECEPTION_SETTINGS" register, which ranges from 0x3F0 to 0x3FF.

The messages below are supported by the PCIe controller and forwarded to a dedicated destination.

- Unlock Message
- ATS Message
- LTR Message
- Optimized Buffer Flush/Fill
- Vendor Defined Type0
- Vendor Defined Type1

In the case of an LTR message, it is imperative that the message is forwarded to the internal register, and it must be directed to a fixed destination address of 0x1A4. Therefore, *LTR_DEST_ADDR* register of *"PMSG_RECEPTION_SETTINGS1 (0x3F4)"* must be fixed to 0x1A4.

For other supported messages, there is flexibility in whether they are forwarded to the internal register or the AXI master interface.

Field	Register	Description			
PMSG_SUPPORT_RX	PMSG_RECEPTION_SETTINGS0 (0x3F0)	Enables the configuration of supported message types.			
PMSG_DEST_ID	PMSG_RECEPTION_SETTINGS1 (0x3F4)	Enables selection of either the AXI master interface or internal register that will be used to forward messages.			
PMSG_DEST_ADDR	PMSG_RECEPTION_SETTINGS2 (0x3F8) PMSG_RECEPTION_SETTINGS3 (0x3FC)	 Allow for specifying the address when targeting an AXI master interface or internal register. If "PMSG_DEST_ID" is set to the Internal Register (5'd12), then "PMSG_DEST_ADDR" must be fixed at 64'hCEO, and the PCIe controller can only support Message TLP with at most 8DW length. If "PMSG_DEST_ID" is set to the AXI master interface (5'd4 to 5'd7), then the 12 LSBs of this address should be equal to 12'b0 and there are no limitations on the message length. 			

For other supported messages, there is the option to forward them either to the internal register or the AXI master interface.

Field	Register	Description		
PMSG_SUPPORT_RX	PMSG_RECEPTION_SETTINGS0 (0x3F0)	Enables the configuration of supported message types.		
PMSG_DEST_ID	PMSG_RECEPTION_SETTINGS1 (0x3F4)	Enables selection of either the AXI master interface or internal register to be utilized for message forwarding.		
PMSG_DEST_ADDR	PMSG_RECEPTION_SETTINGS2 (0x3F8) PMSG_RECEPTION_SETTINGS3 (0x3FC)	 Allow for specifying the address when targeting an AXI master interface or internal register. If "PMSG_DEST_ID" is set to Internal Register (5'd12), then "PMSG_DEST_ADDR" must be fixed at 64'hCE0. Additionally, the PCIe controller can only support Message TLP with at most 8DW length. If "PMSG_DEST_ID" is set to the AXI master interface (5'd4 to 5'd7), then the 12 LSBs of this address should be set to 12'b0, and there are no limitations on the message length. 		

Once the PCIe controller receives an LTR message TLP, the message contents will be written into the internal register "PCIE_LTR_VALUES" (0x1A4), and the status register "LTR_MSG_RECEIVED" (0x14C [0]) will be set. This setting generates a Local Interrupt to notify the local processor.

Figure 3-202 RC Received LTR Message Flow

	Clear RC LTR Message Interrupt							
Offset	Register Name	Bit Location	Action	Value	Description			
0x184	ISTATUS_LOCAL	[31:0]	R	32'h1000_0000	Check whether local interrupt status and Message TLP are received			
0x14C	PCIE_MISC_STATUS	[31:0]	R	32'h0000_0001	Check what kind of Message is received			
0x1A4	PCIE_LTR_VALIE	[31:0]	R	32'hxxxx_xxxx	Check LTR Value			
0x14C	PCIE_MISC_STATUS	[31:0]	w	32'h0000_0001	After checking LTR value and performing requisite action, local processor can clear LTR status			
0x184	ISTATUS_LOCAL	[31:0]	W	32'h1000_0000	Clear local status to de-assert local interrupt			

Table 3-146 RC Handle LTR Message Interrupt Example

When the PCIe controller receives a supported message TLP and the "PMSG_DEST_ID" is set to internal register, the entire message TLP contents, comprising both the header and data, are written into the internal register "PCIE_RECEIVED_MESSAGE" (0xCE0 to 0xCFF). Additionally, the status register "PCIE_MSG_RECEIVED" (0x14C [1]) is set.

This setting generates a local interrupt to notify the local processor.

Figure 3-203 RC Received Other Supported Message Flow

	Clear RC LTR Message Interrupt							
Offset	Register Name	Bit Location	Action	Value	Description			
0x184	ISTATUS_LOCAL	[31:0]	R	32'h1000_0000	Check whether local interrupt status and message TLP are received			
0x14C	PCIE_MISC_STATUS	[31:0]	R	32'h0000_0002	Check what kind of message is received			
0xCE0 to 0xCFF	PCIE_RECEIVED_MESSAGE	[31:0]	R	32'hxxxx_xxxx	Check message header and data			
0x14C	PCIE_MISC_STATUS	[31:0]	W	32'h0000_0002	After checking message type and performing requisite action, local processor can clear message status			
0x184	ISTATUS_LOCAL	[31:0]	w	32'h1000_0000	Clear local status to de-assert local interrupt			

Table 3-147 RC Handle Other Supported Message Interrupt Example

3.12.6.4.3 Reset

The PCIe controller features two reset input ports: the power on reset and the *PERST#*, which is a fundamental reset defined in the PCIe specification. Additionally, the controller provides a software reset controller register, "*PCIE_RST_CTRL*" (0x148), which can be utilized to reset various modules within the PCIe controller.

There are several PCIe link state transitions referred to as "PI Exit Events." When a "PI Exit Event" occurs, the PCIe controller automatically resets certain logic to clear the register back to its default value. The following describes the state transitions associated with the "PI Exit Event":

Exit	Description
Dl Up Exit	LTSSM exits the Disable state or the link is unexpectedly down; then, LTSSM returns to the Detect.Quiet State.
Hot Reset Exit	LTSSM exits the Hot Reset State and returns to the Detect.Quiet state.
L2 Exit	LTSSM exits the L2 state and returns to the Detect.Quiet state.
LTSSM Exit	LTSSM enters the Detect.Quiet state from any state except the upper state.

• In **Rootport mode**, if a "PI Exit Event" occurs, the PCIe controller will reset the PHY, physical layer, data link layer, and transaction layer, with the exception of the configuration space.

Figure 3-204 PCIe Reset Scheme

Table 3-148 Reset Signal Description

Reset Signal Name	Description
ahb_apb_rst_b	Clear AHB or APB slave logic in the AXI layer
axi_rstn	Clear AXI slave and AXI master logic in the AXI layer
br_reg_rstn	Clear internal register in the Bridge layer
br_rstn	Clear Bridge layer logic except the internal register
tl_crstn	Clears all configuration registers in the transaction layer, except sticky registers
tl_rstn	Clears all logic in the transaction layer except configuration registers and reference timer
ref_rstn	Clear reference timer
pl_rstn	Clears the physical and data-link layer logic
pl_pipe_rstn	Clear PHYD logic

Table 3-149 Reset Control

	Power on Reset	PERST# (Only for EP)	Pl Exit Event	ResetBRG (PCIE_RST_CTRL[2])	ResetMAC (PCIE_RST_CTRL[0])	ResetPHY (PCIE_RST_CTRL[1])
ahb_apb_rstn	Yes		Depend on PCIE_RST_CTRL[8]	Yes	No	No
axi_rstn	Yes		Depend on PCIE_RST_CTRL[8]	Yes	No	No
br_reg_rstn	Yes	Depend on PCIE_RST_CTRL[10]	No	No	No	No

	Power on Reset	PERST# (Only for EP)	Pl Exit Event	ResetBRG (PCIE_RST_CTRL[2])	ResetMAC (PCIE_RST_CTRL[0])	ResetPHY (PCIE_RST_CTRL[1])
br_rstn	Yes	Depend on PCIE_RST_CTRL[9]	Depend on PCIE_RST_CTRL[8]	Yes	No	No
tl_crstn	Yes	Depend on PCIE_RST_CTRL[11]	Depend on PCIE_RST_CTRL[6] (only for EP)	No	Yes	No
tl_rstn	Yes Depend on Depend on PCIE_RST_CTRL[7] PCIE_RST_C		Depend on PCIE_RST_CTRL[6]	No	Yes	No
ref rstn Yes		Depend on PCIE_RST_CTRL[7]	Depend on PCIE_RST_CTRL[6]	No	Yes	No
pl_rstn	Yes	Depend on PCIE_RST_CTRL[5]	Depend on PCIE_RST_CTRL[14]	No	Yes	No
pl_pipe_rstn	Yes	Depend on PCIE_RST_CTRL[4]	Depend on PCIE_RST_CTRL[12]	No	No	Yes

Table 3-150 Reset Scope for PI Exit Event

Role	DI Up Exit	Hot Reset Exit	L2 Exit
RC	Pl_rstn	Pl_rstn	Pl_rstn
nc.	Tl_rstn	Tl_rstn	Tl_rstn

3.12.6.4.4 Handling Interrupts

The ISTATUS_LOCAL (located at *PCIE_MAC Base address + 0x0184*) register reports the interrupt source in bits 31 to 0 when any of the following events occurs. The host processor has the ability to enable or mask each interrupt source independently by setting or clearing the corresponding bit in the *IMASK_LOCAL* (located at *PCIE_MAC Base address + 0x0180*) register. PCIe has the capability to generate interrupts to the Local processor for the following events:

Bit	Description
Bit [31]	System error signaled
Bit [30]	PM/LTR/Hotplug event for RC
Bit [29]	AER Event for RC
Bit [28]	Message TLP received except LTR and PTM
Bit [27]	Asserted when PCI interrupt line D is asserted
Bit [26]	Asserted when PCI interrupt line C is asserted
Bit [25]	Asserted when PCI interrupt line B is asserted
Bit [24]	Asserted when PCI interrupt line A is asserted
Bit [23]	L2 Wakeup: Asserted when L2 wakeup event happened
Bit [22]:	PCIe discard error: Asserted to signal a completion timeout on a PCIe read request
Bit [21]:	PCIe fetch error: Asserted to indicate that an error occurred on a PCIe read request
Bit [20]:	PCIe post error: Asserted to indicate that an error occurred on a PCIe write request
Bit [19]:	PCIe PTM message received: Asserted to indicate that a precise time message was received

© 2023-2024 MediaTek Inc. All rights reserved.

Bit	Description				
Bit [18]:	AXI discard error: Asserted to signal a completion timeout on an AXI read request				
Bit [17]:	AXI fetch error: Asserted to indicate that an error occurred on an AXI read request				
Bit [16]:	AXI post error: Asserted to indicate that an error occurred on an AXI write request				
Bit [15:8]:	Multiple MSI received: Report MSI events to the local processor. Bit number i corresponds to				
	function number i				
Bit [7:0]	Reserved for RC mode because DMA engines are not implemented				

The occurrence of any of these events leads to the reporting of the interrupt source in the "ISTATUS_LOCAL (0x184)" register. The Host processor has the ability to enable or mask each interrupt source independently by setting or clearing the corresponding bit in the "IMASK_LOCAL (0x180)" register. For detailed information about these registers, refer to "MT8370 Register Map".

When an interrupt source is active and not masked, an interrupt is generated on the AXI domain and reported through the *"pcie_interrupt_out"* output port. The processing of this interrupt upon receipt by the Local processor is application-specific. However, in general, the local processor:

- Reads the *"ISTATUS_LOCAL (0x184)"* register to determine the source of the interrupt.
- Reads any other bridge configuration space status registers if required.
- Reads any PCIe configuration space registers if required.
- Reads any PCIe device status registers if required.
- Performs the requisite actions.
- Clears the *"ISTATUS_LOCAL (0x184)"* interrupt source by writing 1 to the corresponding bit.

Bit	Interrupt Source	Level2 Mark	Level2 Status	Level1 Mark	Level1 Status
0	Internal DMA0 End	N/A	Internal DMA0 Status (0x420)	0x180[0]	0x184[0]
1	Internal DMA1 End	N/A	Internal DMA1 Status (0x460)	0x180[1]	0x184[1]
2	Internal DMA2 End	N/A	Internal DMA2 Status (0x4A0)	0x180[2]	0x184[2]
3	Internal DMA3 End	N/A	Internal DMA3 Status (0x4E0)	0x180[3]	0x184[3]
4	Internal DMA4 End	N/A	Internal DMA4 Status (0x520)	0x180[4]	0x184[4]
5	Internal DMA5 End	N/A	Internal DMA5 Status (0x560)	0x180[5]	0x184[5]
6	Internal DMA6 End	N/A	Internal DMA6 Status (0x5A0)	0x180[6]	0x184[6]
7	Internal DMA7 End	N/A	Internal DMA7 Status (0x5E0)	0x180[7]	0x184[7]
	Internal DMA0 Error	N/A	Internal DMA0 Status (0x420)		
8	Receive MSI for MSI	MSI Function0 Mark		0x180[8]	0x184[8]
	Funciton0	(0xC08)	MSI Function0 Status (0xC04)		
	Internal DMA1 Error	N/A	Internal DMA1 Status (0x460)		
9	Receive MSI for MSI	MSI Function1 Mark		0x180[9]	0x184[9]
	Funciton1	(0xC18)	MSI Function1 Status (0xC14)		
	Internal DMA2 Error	N/A	Internal DMA2 Status (0x4A0)		
10	Receive MSI for MSI	MSI Function2 Mark		0x180[10]	0x18410]
	Funciton2	((0xC28)	MSI Function2 Status (0xC24)		

Table 3-151 Local Interrupt Table for RC Mode

Bit	Interrupt Source	Level2 Mark	Level2 Status	Level1 Mark	Level1 Status
	Internal DMA3 Error	N/A	Internal DMA3 Status (0x4E0)		
11	Receive MSI for MSI Funciton3	MSI Function3 Mark (0xC38)	MSI Function3 Status (0xC34)	0x180[11]	0x184[11]
	Internal DMA4 Error	N/A	Internal DMA4 Status (0x520)		0x184[12]
12	Receive MSI for MSI Funciton4	MSI Function4 Mark (0xC48)	MSI Function4 Status (0xC44)	0x180[12]	
-	Internal DMA5 Error	N/A	Internal DMA5 Status (0x560)		
13	Receive MSI for MSI Funciton5	MSI Function5 Mark (0xC58)	MSI Function5 Status (0xC54)	0x180[13]	0x184[13]
	Internal DMA6 Error	N/A	Internal DMA6 Status (0x5A0)		
14	Receive MSI for MSI Funciton6	MSI Function6 Mark (0xC68)	MSI Function6 Status (0xC64)	0x180[14]	0x184[14]
	Internal DMA7 Error	N/A	Internal DMA7 Status (0x5E0)		
15	Receive MSI for MSI Funciton7	MSI Function7 Mark (0xC78)	MSI Function7 Status (0xC74)	0x180[15]	0x184[15]
16	AXI ADT Event: Post Error	ADT to Local Mark (0x1AC[24])	AXI ADT Status (0x1F0~0x1FF)		0x184[16]
	N/A	N/A N/A N/A			
17	AXI ADT Event: Fetch Error	ADT to Local Mark (0x1AC[25])	AXI ADT Status (0x1E0~0x1EF)	0x180[17]	0x184[17]
	N/A	N/A	N/A	-	
18	AXI ADT Event: Discard Error	ADT to Local Mark (0x1AC[26])	AXI ADT Status (0x1E0~0x1EF)	0x180[18]	0x184[18]
	N/A	N/A	N/A		
19	AXI ADT Event: Doorbell	ADT to Local Mark (0x1AC[27])	AXLADT Status (0x1F0~0x1FF)		0x184[19]
19	Precise Time Message Received	N/A	PTM Register (0xD80~0xD93)	0x180[19]	0,104[13]
	PCle ADT Event: Post	ADT to Local Mark	PCIe ADT Status		
20	Error	(0x1AC[28])	(0x1D8~0x1DF)	0x180[20]	0x184[20]
	N/A	N/A	N/A		
	PCle ADT Event: Fetch	ADT to Local Mark	PCIe ADT Status		
21	Error	(0x1AC[29])	(0x1D8~0x1DF)	0x180[21]	0x184[21]
	N/A	I/A N/A N/A			
	PCIe ADT Event: Discard	ADT to Local Mark	PCIe ADT Status		
22	Error	(0x1AC[30]) (0x1D8~0x1DF)		0x180[22]	0x184[22]
	N/A N/A N/A				
23	PCIe ADT Event: Doorbell	ADT to Local Mark (0x1AC[31])	PCle ADT Status (0x1D8~0x1DF)	0x180[23]	0x184[23]
	L2 Remote Wakeup	N/A	N/A		

Bit	Interrupt Source	Level2 Mark	Level2 Status	Level1 Mark	Level1 Status	
24	Interrupt line A is asserted	N/A	N/A	0x180[24]	0x184[24]	
25	Interrupt line B is asserted	N/A	N/A	0x180[25]	0x184[25]	
26	Interrupt line C is asserted	N/A	N/A	0x180[26]	0x184[26]	
27	Interrupt line D is asserted	N/A	N/A	0x180[27]	0x184[27]	
28	Message Received	N/A	Message Status Register (0x14C)	0x180[28]	0x184[28]	
20	LTR Message Received	N/A	Message Status Register (0x14C)	0,100[20]	0X104[20]	
29	AER Event	N/A	N/A	0x180[29]	0x184[29]	
30	Receive PME Message	N/A	N/A	0x180[30]	0x184[30]	
31	Reset Event	N/A	N/A	0x180[31]	0x184[31]	
51	System Error N/A		N/A	07100[31]	0X104[31]	

3.12.6.4.4.1 Receiving INTX Message

In the root port mode, the PCIe controller is capable of generating a local interrupt to inform the local processor when it receives an *INTX* message from an endpoint. Upon receiving an *ASSERT INTX* message, the PCIe controller sets the *"INT_EVT"* bit in the *"ISTATUS_LOCAL (0x184)"* register, and this status remains asserted until the Root Complex (RC) receives a DEASSERT INTX message from the endpoint.

- If "ISTATUS_CTRL[3] (0x1AC)" equals 0, the local processor is responsible for clearing the corresponding "INT_EVT" status bit to complete the INTX handle flow.
- If "ISTATUS_CTRL[3] (0x1AC)" equals 1, the hardware automatically clears the corresponding "INT_EVT" status bit upon receiving a DEASSERT INTX message from the endpoint.

Figure 3-205 RC Handles Received INTX Flow If ISTATUS_CTRL[3] Is 0

3.12.6.4.4.2 Receiving MSI Message

In Root port mode, the PCIe Controller has the capability to support up to eight MSI capture addresses, and the local processor can set them to the "IMSI_LO_ADDR (0xC00 + 0x10N, N = 0 to 7)" and "IMSI_HI_ADDR (0xC80 + 0x04N, N = 0 to 7)" registers.

Whenever the core receives a memory write request at any of these addresses, it signals in the "ISTATUS_LOCAL (0x184)" register that an MSI has been received, and logs the received message number in the "ISTATUS_MSI (0xC04 + 0x10*N, N = 0 to 7)" register.

Figure 3-206 RC Handles Received MSI Flow

	Set RC Function 0 MSI							
Offset	Register Name	Bit Location	Action	Value	Description			
0xC00	IMSI_LO_ADDR_F0	[31:14]	w	32'hAAAABBB0	MSI address must be DW alignment; software must set bit[1:0] to 0.			
0xC80	IMSI_HI_ADDR_F0	[31:0]	w	32'hFFFFFFF	MSI capture address is 64'hFFFFFFF_AAAABBBO. When MAC receives memory write TLP and its address is 64'hFFFFFFF_AAAABBBO, MAC will write MSI data to 0xC04 of internal register.			
0xC08	IMASK_MSI_ F0	[31:0]	W	32'h0000_000F	Support 4 MSI numbers.			
0x190	RC_MSI_EN	[0]	W	1'b1	Enable RC Function0 MSI capture capability.			

	Set RC Function 0 MSI						
Offset Register Name Bit Location Action Value Description							
0x180	IMASK_LOCAL	[8]	W	1'b1	Set the local interrupt enable bit to generate a local interrupt when receiving a Function0 MSI.		

Table 3-153 RC Clear MSI Status Example

	Clear RC Function 0 MSI									
Offset	Register Name	Bit Location	Action	Value	Description					
0x184	ISTATUS_LOCAL	[31:0]	R	32'h0000_0100	Check whether local interrupt status and MSI message for function 0 are received.					
0xC04	ISTAUS_MSI_F0	[31:0]	R	32'h0000_0004	Check MSI Status and received MSI number is 2.					
0xC04	ISTAUS_MSI_F0	[31:0]	W	32'h0000_0004	After performing IRQ process, local processor can clear MSI status.					
0x184	ISTATUS_LOCAL	[31:0]	W	32'h0000_0100	Clear local status to de-assert local interrupts					

3.12.6.5 Power Management

The PCIe controller offers multiple low power modes, including LOs, L1, L1PM (L1 Power Management), L1SS (L1 Power Management Sub-State), and L2, to cater to various application and scenario requirements.

3.12.6.5.1 ASPM LOs Low Power

The ASPM LOs low-power state can be initiated by both the endpoint and rootport cores. This state does not require any application action, as it is automatically handled by the core.

- The core enters the ASPM LOs state after a pre-defined period of PCIe transmit inactivity, which is set by the ASPM LOs entry delay (in steps of 256ns from 1 31) defined by the "PCIE_PEX_SPC2 (0x0D8)" register.
- The core exits the ASPM LOs state as soon as a packet needs to be transmitted to the PCIe.

3.12.6.5.2 ASPM L1 Low Power

The core automatically handles the low-power state without requiring any action from the application.

- The core enters ASPM L1 after a specific period of inactivity, which is determined by the ASPM L1 entry delay. This delay is set by the "PCIE_PEX_SPC2 (0x0D8)" register and can be adjusted in increments of 256ns between 1 and 31.
- The core exits ASPM L1 when it needs to transmit a packet to the PCIe or when its link partner exits the low-power state.

Only endpoint cores can initiate the entry to the ASPM L1 low-power state.

- The endpoint core enters ASPM L1 after a specific period of inactivity, determined by the ASPM L1 entry delay set by the "PCIE_PEX_SPC2 (0x0D8)" register.
- The Rootport core enters ASPM L1 when requested by its link partner and there are no packets to be transmitted to the PCIe.

• Both cores exit ASPM L1 when a packet needs to be transmitted to the PCIe or when the link partner exits the lowpower state.

Note:

If the downstream port (Rootport) declines the core's request to enter ASPM L1 after the specified period of activity, the link will remain in its full operational state. In this case, the endpoint waits for 10µs before requesting ASPM L1 entry again, following the guidelines of the PCIe Specification.

3.12.6.5.3 L1 Low Power

Only an endpoint core can initiate the entry to the L1 low-power state, but only when its legacy low-power state is not D0. The core automatically handles this low-power state and does not require any action from the application.

- To enter L1, an endpoint core must set its legacy low-power state to D1, D2, or D3, as indicated by the "PCIE_ISTATUS_PM (0x19C)" register. Any changes to the legacy power state are reported by the "PM_EVT" bit of the "ISTATUS_LOCAL (0x184)" register.
- The endpoint core enters L1 when there are no more packets to be transmitted. On the other hand, a Rootport core enters L1 when its link partner requests entry and there are no packets to be transmitted to the PCIe.
- Both cores exit L1 as soon as a packet needs to be transmitted.
- An endpoint core exits L1 either when directed to do so by its link partner or by setting the "Send_PME" bit in the "PCIE_ICMD_PM (0x198)" register. This sends a power management event to request that the link partner changes its legacy power state.

3.12.6.5.4 L2 Low Power

The L2 low-power state enables the PCIe link to be completely turned off, but it can only be initiated by a Rootport core.

- To enter the L2 state, a Rootport core disables the link as soon as its link partner is ready and the application sets the "*Turn_Off_Link*" bit in the "*PCIE_ICMD_PM* (0x198)" register.
- The Rootport core exits the L2 state and re-enables the link when the application clears the "Turn_Off_Link" bit in the "PCIE_ICMD_PM (0x198)" register.
- In contrast, an endpoint core automatically enters the L2 state when directed to do so by its link partner. It can only exit L2 if directed to do so by its link partner or by setting the "WAKE_N" bit in the "PCIE_MISC_CTRL (0x348)" register. The latter option sends a request to the link partner to re-enable the link.

Figure 3-207 RC Enters L2 State Flow

Figure 3-208 RC Exits L2 State Flow

3.12.6.5.5 Implementing Power Management with CLKREQ#

CLKREQ# is an optional side-band pin that may be available in certain form factors, and is utilized to reduce power consumption. This feature is supported by the clock power management and L1 PM substates with CLKREQ# features. It should be noted that only one of these power-saving techniques can be used at any given time.

The functionality of CLKREQ# is implemented through the link capability and link control registers present in the configuration space. When multiple functions are enabled, each function must be capable of utilizing CLKREQ#.

When CLKREQ# is employed to manage power consumption in the L2 state, the MAC transitions from the P0 to the P2 low power state to halt the reference clock, and subsequently deasserts CLKREQ#.

In the event that bit [8] of the "PCIE_ICMD_PM (0x198)" register for RC (RC CLKREQ# Clock control) is set to 1 upon entry into the L1 state, the MAC transitions directly from P0 to P2, bypassing P1. Upon exiting the L1 or L2 states, CLKREQ# is asserted to restart the Reference Clock.

The waveform below demonstrates an L1 entry where the application does not allow clock removal (bit [8] of the *"PCIE_ICMD_PM (0x198)" register = 0*), followed by an L1 entry where clock removal is permitted (bit [8] of the *"PCIE_ICMD_PM (0x198)" register = 1*).

Figure 3-209 RC L1 Entry with and without Clock Removal

3.12.6.5.5.1 L1PM Sub-States with CLKREQ#

L1 PM sub-states (L1SS) is an extension to the PCIe Specification that permits further power savings in the L1 and ASPM L1 states. This feature is configured through the L1 PM sub-states capability and the *T_POWEROFF* parameter found in bits [7:5] of the *"PCIE_PEX_L1SS (0x0E0)"* register.

If any L1PM Substate enable bit in the configuration space is set to 1 while the core is in the L1 state, it has the ability to transition to the L1.1 or L1.2 sub-states if all the necessary conditions for this transition are met.

In the event that the L1PM Substate enable bit in the configuration space is set to 0 upon L1 entry, the core will remain in the L1.0 state. The core's present state is indicated by bits [10:8] of the *"PCIE_ISTATUS_PM (0x19C)"* register (l1pm_sm).

The PIPE clock (*PL_PCLK*) may be halted when the core is in the L1.1 or L1.2 sub-states. However, the Transaction Layer clock (*TL_CLK*) must continue to operate, albeit at a very low frequency, so that any traffic on the transaction layer transmit interface will prompt the core to assert CLKREQ# and exit low-power mode.

If the PCIe registers (PCIe configuration space registers or bridge registers) are accessed via the PCIe link while the core is in L1, L1.1, or L1.2, the core must exit the low power states. Conversely, if the registers are accessed via the AXI, the core does not need to exit low power mode.

L1 Power State	RC CLKREQ# Clock Control 0x198[8]	L1PM Sub-State Enable 0x1118[3:0]	Root Complex Power State and CLKREQ# Status
			LTSSM = L1 Power State = P1
L1 with P1	0x198[8]==0	0x1118[3:0]==0	L1PM State = L1.0
			CLKREQ# Asserted (CLKREQ# is 0)
L1 with P2 (L1PM)			LTSSM = L1
(L1 with clock	0x198[8]==1	0x1118[3:0]==0	Power State = P2
power		0X1110[3.0]0	L1PM State = L1.0
management)			CLKREQ# De-asserted (CLKREQ# is 1)
			LTSSM = L1
L1SS	0x198[8]==0	0x1118[3:0]!=0	Power State = P2
	0,130[0]0	0X1110[3.0]!=0	L1PM State = L1.1 or L1.2
			CLKREQ# De-asserted (CLKREQ# is 1)
			LTSSM = L1
L1SS	0x198[8]==1	0x1118[3:0]!=0	Power State = P2
	0/130[0]1	0.1110[3.0]!-0	L1PM State = L1.1 or L1.2
			CLKREQ# De-asserted (CLKREQ# is 1)

Table 3-154 RC L1 State Setting

3.12.6.6 Theory of Operations

3.12.6.6.1 Address Translation Mechanism

The PCIe controller adopts address translation to:

- Convert PCIe read and write requests to any AXI4 master interface read and write transaction.
- Convert any AXI4 slave interface read and write transaction to PCIe read and write requests.
- Convert an address between PCIe domain and AXI domain.

3.12.6.6.1.1 Address Translation for PCIe to AXI Direction

Figure 3-210 RC Receive Memory Write TLP

3.12.6.6.1.1.1 RC mode

In the Root port mode, the core allows the implementation of up to sixteen translation tables.

During the transfer of PCIe received requests to the AXI master, the bridge performs a windows match utilizing the PCIe 64bit address. Once a match is detected, the Bridge proceeds to forward the request to the intended AXI4 master interface, along with the corresponding AXI base address.

For instance, in the diagram below, if a write request is received at address 64'hBBBBBBBB_00020140, the bridge matches the address with the PCIe window's tables. Upon finding a match in Table 2, the request is forwarded to the AXI4-Master #0 interface located at address 64'hCCCCCCCC_00000000 + 17'h0140.

The diagram below illustrates the PCIe to AXI4 master address translation in the root port mode.

Figure 3-212 PCIe to AXI Master Address Translation for RC

3.12.6.6.1.2 Address Translation for AXI to PCIe Direction

Figure 3-213 RC Initiated Memory Write

The address translation method utilized for transferring AXI receive requests to the PCIe interface is comparable. The core allows for up to eight translation tables to be implemented per implemented AXI4-slave interface. The following diagram illustrates the AXI4 slave to PCIe address translation.

Figure 3-215 AXI Slave to PCIe Address Translation for RC

3.12.6.6.1.2.1 Set Address Translation Table

3.12.6.6.1.2.1.1 Address Translation Register

The address translation registers are categorized into six sections based on the internal bus slave port to be translated, as presented in Table 3-155.

Address translation settings allow for specification of the following parameters:

- Implementation or disablement of the table.
- Table size, ranging from 4 Kbytes to 16 Exabytes (2^64 bytes). If the table size is set to 16 Exabytes, no address conversion is performed since window matching is always successful. This setting is useful when address translation is required outside of the bridge.
- Source address, defining the offset address of the table inside the PCIe or AXI slave Window.
- Translated interface, specifying the interface to which the read or write request should be transferred. It can be set to PCIe, AXI4-Master, or AXI4-Stream.
- Transfer parameters, enabling definition of specific PCIe or AXI attributes or parameters per table.

Byte Address	Read/Write (R/W)	Description					
0x0600 – 0x06FF	Read only (RO) or RW	ATR_PCIE_WIN0: PCIe window 0 address translation tables 0-7					
0x0700 – 0x07FF	RO or RW	ATR_PCIE_WIN1: PCIe window 1 address translation tables 0-7					
0x0800 – 0x08FF	RO or RW	ATR_AXI4_SLV0: AXI4 slave 0 address translation tables 0-7					
0x0900 – 0x09FF	RO or RW	ATR_AXI4_SLV1: AXI4 slave 1 address translation tables 0-7					
0x0A00 – 0x0AFF	RO or RW	ATR_AXI4_SLV2: AXI4 slave 2 address translation tables 0-7					
0x0B00 – 0x0BFF	RO or RW	ATR_AXI4_SLV3: AXI4 slave 3 address translation tables 0-7					

Table 3-155 Address Translation Table Address

Table 3-156 Transfer Parameter						
Targeted Interface	Target ID	Description				
		• Bit [2:0]: TLP type				
		– 3'b000: Memory				
		 3'b001: Memory locked 				
		 3'b011: Translation request 				
		 3'b101: Memory translated request 				
		– 3'b010: I/O				
		 3'b100: Message 				
		 Other values are reserved. 				
PCIe	4'h0	• Bit [3]: Translation request no write (NW) flag (must be 0b when the TLP type is				
		different from 3'b011).				
		Bit [6:4]: TLP attributes				
		 Bit 4: No snoop 				
		 Bit 5: Relaxed ordering 				
		 Bit 6: ID-based ordering 				
		Bit [7]: ECRC forward				
		Bit [10:8]: Traffic class				
		Bit [11]: Reserved				
		• Bit [3:0]: ACACHE				
AXI4-Master	4'h4 4'h7	• Bit [4]: ALOCK				
AXI4-IVIASLEI	4 114 4 117	• Bit [7:5]: APROT				
		• Bit [11:8] AQOS				
AXI4-Stream	4'h8 4'hB	• Bit [7:0]: TID				
AVIA-20169111	4 118 4 118	• Bit [11:8]: TDEST				

Table 3-156 Transfer Parameter

3.12.6.6.1.2.2 Programming Address Translation Table (PCIe to AXI Master Direction)

Table 3-157 Set Address Translation Table for PCIe to AXI Direction

	For Table0: 0x0600 to 0x061F									
Offset Register Name Bit Location Action		Action Value		Description						
0x600	ATR_IMPL	[0]	W	1'b1	The table is enabled.					
	ATR_SIZE	[6:1]	W	6'd14	Table Size is 2^ (14+1) =32KB.					
	SRC_ADDR_LSB	[31:12]	W	20'b0	SRC_ADDR[ATR_SIZE:0] will be ignored to align the Table size.					
0x604	SRC_ADDR_MSB	[31:0]	w	32'b0	Any memory address in 0x00000000_00000000 to 0x00000000_000007FFF range will match table0.					

	For Table0: 0x0600 to 0x061F								
Offset Register Name Bit Location Action Value		Value	Description						
0x608	SRC_BAR	[3:0]	w	4'd0	If the device has multiple functions, it is necessary to set dedicated BAR number for the table. If the device has only a single function, the register would be ignored by the bridge.				
0x608	SRC_FUNC	[8:4]	w	5'd0	If the device has multiple functions, it is necessary to set dedicated function number for the table. If the device has only one single function, the register would be ignored by the bridge.				
0x608	TRSL_ADDR_LSB	[31:12]	w	20'b0	TRSL_ADDR[ATR_SIZE:0] will be ignored to align the table size				
0x60C	TRSL_ADDR_MSB	[31:0]	w	32'hEEEEEEE	Any memory address hit table0 is mapped to 0xEEEEEEE_00000000 to 0xEEEEEEE_000007FFF.				
0x610	TRSL_ID	[3:0]	W	4'd4	To AXI master 0				
	TRSF_PARAM	[19:16]	W	4'd0	AXI master ACACHE value is 0.				
	TRSF_PARAM	[20]	W	1'b0	AXI master ALOCK value is 0.				
	TRSF_PARAM	[23:21]	W	3'b0	AXI master APROT value is 0.				
	TRSF_PARAM	[27:24]	W	4'b0	AXI master AQOS value is 0.				

3.12.6.6.1.2.3 Programming Address Translation Table (AXI slave to PCIe Direction)

AXI slave0 uses 2 tables to map to 2 destinations.

- Space0 start address: 0xAAAAAAAA_00000000
- As the table0 size of AXI slave0 is 17 bits,

if AXI slave0 address range is between 0xAAAAAAAA_00000000 and 0xAAAAAAAA_0001FFFF, it will match table 0 and be translated to new memory addresses 0xBBBBBBBB_00000000 to 0xBBBBBBBB_0001FFFF.

Figure 3-216 AXI Slave to PCIe Address Translation

	For AIX Slave0 Table0: 0x0800 to 0x081F								
Offset	Register Name	Bit Location	Action	Value	Description				
0x800	ATR_IMPL	[0]	W	1'b1	The table is enabled.				
	ATR_SIZE	[6:1]	W	6'd16	Table Size is 2^ (16+1) =128KB.				
	SRC_ADDR_LSB	[31:12]	W	20'b0	SRC_ADDR[ATR_SIZE:0] is ignored to align the				
					table size.				
				32'hAAAAAAA	Any AXI address between				
0x804	SRC_ADDR_MSB	[31:0]	W	A	0xAAAAAAA_00000000 to				
				A	0xAAAAAAAA_00001FFFF will match table0.				
0x808	TRSL ADDR LSB	[31:12]	W	20'b0	TRSL_ADDR[ATR_SIZE:0] will be ignored to				
0x000	TKSL_ADDK_LSB	[51.12]	vv	20.00	align the Table size.				
					Any AXI address hits table0 will be mapped to				
0x80C	TRSL_ADDR_MSB	[31:0]	W	32'hBBBBBBBB	0xBBBBBBBB_00000000 to				
					0xBBBBBBBB_000001FFFF.				
0x810	TRSL_ID	[3:0]	W	4'd0	To PCIe interface				
	TRSF_PARAM	[18:16]	W	3'd0	Memory TLP				
	TRSF_PARAM	[19]	W	1'b0	NW flag is 0				
	TRSF_PARAM	[22:20]	W	3'b0	No snoop				
	TRSF_PARAM	[23]	W	1'b0	ECRC is not forwarded.				
	TRSF_PARAM	[26:24]	W	3'b0	TC is 0.				

Table 3-158 Set Address Translation Table for AXI to PCIe Direction

3.12.6.6.2 Access Configuration Space and Configure TLP Transfer

The CPU located in a specific locality can access its own configuration space, as well as the configuration space of other devices (in RC mode). This can be achieved through the utilization of the AHB/AXI4-Lite Slave interface or the AXI4 Slave interface.

Figure 3-217 RC Configuration Read/Write

In order to access the PCIe controller register within the range of addresses 0x1000 to 0x1FFF, the accesses are routed through the PCIe controller backend configuration space interface. This allows a local processor to effectively read from or write to the PCIe controller configuration space.

Table 3-159 PCIe Configuration Space Register Address for Backend

Byte Address	Read/Write (R/W)	Description		
0x1000 - 0x10FF	RO/RW	PCI configuration space		
0x1100 - 0x1FFF	RO/RW	PCIe extended configuration space		

To access the desired function's configuration Space, it is necessary to appropriately configure the "*PCIE_CFGNUM* (0x140)" register prior to accessing the configuration space. See below for the definitions.

Bit	Definition			
Bit [2:0]	FUNC_NUMBER (physical function number)			
Bit [7:3]	DEVICE_NUMBER			
Bit [15:8]	BUS_NUMBER			
Bit [19:16]	BYTE_EN (configuration byte enabled)			
Bit [20]	FORCE_BE In situations where the target is the R1C register and the AHB/APB/AXI4-Lite protocol lacks a read strobe, the byte enables of the CFG read or write request should be set to the "BYTE_EN" field value. This will be enforced even in cases where the AHB/APB/AXI4-Lite strobes are absent.			
Bit [30:24]	VFUNC_NUMBER (virtual function number)			

Table 3-160 PCIE_CFGNUM (0x140) Bit Definition

In the root port mode, the PCIe controller allows the local processor to access bridge configuration Space and send CFG read and write requests via the PCIe interface. To accomplish this, the local processor should configure the "PCIE_CFGNUM (0x140)" register accordingly and access the desired register.

Figure 3-218 RC Access Configuration Space by Backend Interface

3.12.6.7 Programming Guide

Step	Address	Register Name	Local Address	R/W	Value	Description					
PCle C	PCIe Controller Initialization										
1	PCIE_MAC Base address +0x0080	port_type	GEN_SETTINGS[0]	w	1'b1	Port Type must be chosen as Rootport. Please set bit 0 of GEN_SETTINGS register (PCIE_MAC Base Address +0x0080) if the default value is not as expected.					
Reset	Setting			1 I							
2	PCIE_MAC Base address +0x0148	ResetMAC ResetPHY ResetBRG ResetMAC	PCIE_SW [0] PCIE_SW [1] PCIE_SW [2]	w	1'b1 1'b1 1'b1 1'b1 1'b0	Software reset PCIE_SW[2:0](PCIE_MAC Base Address +0x148) may be					
3	PCIE_MAC Base address +0x0148	ResetPHY ResetBRG	PCIE_SW [0] PCIE_SW [1] PCIE_SW [2]	w	1'b0 1'b0 1'b0	asserted and de-asserted for safety purposes.					
4	PCIE_MAC Base address +0x0148	ResetPE	PCIE_SW [3]	w	1'b0	PERST# (PCIE_SW[3] (PCIE_MAC Base Address +0x148)) must be de-asserted for the link sequence. Please refer to the reset scenario description.					

Table 3-161 RC Initialization Sequence

© 2023-2024 MediaTek Inc. All rights reserved.

Step	Address	Register Name	Local Address	R/W	Value	Description
Misc.	Setting	l				
5	PCIE_MAC Base address +0x0098	DeviceID VendorID	PCIE_PCI_IDS_0[31:16] PCIE_PCI_IDS_0[15:0]	w	Appropriate value	The Vendor ID, Device ID, Revision ID, Classcode can be set by filling the new value to the PCIE_PCI_IDS_0 register
6	PCIE_MAC Base address +0x009C	Classcode RevisionID	PCIE_PCI_IDS_1[31:8] PCIE_PCI_IDS_1[7:0]	w	Appropriate value	(PCIE_MAC Base Address +0x0098), PCIE_PCI_IDS_1 register (PCIE_MAC Base Address +0x009C) if the default value is not as expected.
Interr	upt enable setti	ng	l			
8	PCIE_MAC Base address +0x0180		IMASK_LOCAL[31:0]	w	Appropriate value	Enable the corresponded interrupt by setting IMASK_LOCAL register (PCIE_MAC Base address+0x0180)
Addre	ess Translation se	etting				
9	PCIE_MAC Base address +0x0600~0x07 FF PCIE_MAC Base address +0x0800~0x0B FF	SRC_ADDR_LSB SRC_ADDR_MSB TRSL_ADDR_LSB TRSL_ADDR_MSB TRSL_PARAM	ATR_PCIE_WINO ATR_PCIE_WIN1 ATR_AXI_SLV0 ATR_AXI_SLV1 ATR_AXI_SLV2 ATR_AXI_SLV3	w	Appropriate value	Set PCIe Address Translation window for I/O memory, prefetchable and non- prefetchable memory resource. Set the address transaction window to remap PCIe bus address if there is demand from the user.
10	PCIE_MAC Base address +0x00FC	PFWIN_64B PFWIN_IMPL IOWIN_32B IOWIN_IMPL	PCIE_BAR_WIN[3:0]	w	Appropriate value	Set 3'b11 to bit 3:2 of PCIE_BAR_WIN (PCIE_MAC Base address+0x00FC) if Prefetchable memory resource is needed. Set 3'b11 to bit 1:0 of PCIE_BAR_WIN (PCIE_MAC Base address+0x00FC) if IO resource is needed.
Config	guration space so	etting				
11	PCIE_MAC Base address +0x1004	IO_Enable MEM_ENABLE Bus_master_enabl e	PCIE_CONF_HDR1[0] PCIE_CONF_HDR1[1] PCIE_CONF_HDR1[2]	w	1'b1 1'b1 1'b1	Bus_Master_Enable and MEM_ENABLE should be asserted by writing 3'b11 to bit 2:1 of the PCIE_CONF_HDR1 register (PCIE_MAC Base address+0x1004), and set IO Enable by writing 1 to bit 0 of the PCIE_CONF_HDR1 register (PCIE_MAC Base

© 2023-2024 MediaTek Inc. All rights reserved.

Step	Address	Register Name	Local Address	R/W	Value	Description
						address+0x1004) if IO
						transaction is needed.
12	PCIE_MAC Base address +0x1010~0x10 17	Bar0~Bar1	PCIE_CONF_HDR4 PCIE_CONF_HDR5	W	Appropriate value	The field of BARX register (PCIE_MAC Base address+0x1010~) for RC internal register accessing via PCIe Host should be filled with a proper value. It will be filled up by native driver during Host boot-up.
13	PCIE_MAC Base address +0x1018	Prim_Bus_Num Sec_Bus_Num Sub_Bus_Num	PCIE_CONF_HDR6_TYPE 1[7:0] PCIE_CONF_HDR6_TYPE 1[15:8] PCIE_CONF_HDR6_TYPE 1[23:16]	W	Appropriate value	It is recommended to give an effective Subordinate Bus Number, Secondary Bus Number, and Primary Bus Number by writing appropriate values to bit 23 to 16, bit 15 to 8, and bit 7 to 0 of the PCIE_CONF_HDR6_TYPE1 register (PCIE_MAC Base address+0x1018). It will be filled up by native driver during Host boot-up.
14	PCIE_MAC Base address +0x101C PCIE_MAC Base address +0x1030	IO_Base IO_Limit IO_Base_Up IO_Limit_Up	PCIE_CONF_HDR7_TYPE 1[7:4] PCIE_CONF_HDR7_TYPE 1[15:12] PCIE_CONF_HDR12_TYP E1[15:0] PCIE_CONF_HDR12_TYP E1[31:16]	W	Appropriate value	IO_Base and IO_Limit should be specified according to the downstream device I/O Range to bit 15 to 12 and bit 7 to 4 of the PCIE_CONF_HDR7_TYPE1 register (PCIE_MAC Base address+0x0101C). IO_Base_Up and IO_Limit_Up should also be specified if IOWIN_32B (bit 1 of PCIE_BAR_WIN (PCIE_MAC Base address+0x00FC)) is set. It will be filled up by native driver during Host boot-up.
15	PCIE_MAC Base address +0x1020~0x10 2F	Pref_Mem_Limit Pref_Base_Up_32b	PCIE_CONF_HDR8_TYPE 1[15:4] PCIE_CONF_HDR8_TYPE 1[31:20] PCIE_CONF_HDR9_TYPE 1[15:4] PCIE_CONF_HDR9_TYPE 1[31:20]	w	Appropriate value	Mem_Limit and Mem_Base should be specified according to the downstream device Memory Range to bit 31 to 20 and bit 15 to 4 of the PCIE_CONF_HDR8_TYPE1 register (PCIE_MAC Base address+0x1020).

Step	Address	Register Name	Local Address	R/W	Value	Description
			PCIE_CONF_HDR10_TYP			Pref_Mem_Limit and
			E1			Pref_Mem_Base should also be
			PCIE_CONF_HDR11_TYP			specified according to the
			E1			downstream device Memory
						Range to bit 31 to 20 and bit 15
						to 4 of the
						PCIE_CONF_HDR9_TYPE1
						register (PCIE_MAC Base
						address+0x1024) if
						PFWIN_IMPL(bit 2 of
						PCIE_BAR_WIN (PCIE_MAC Base
						address+0x00FC)) is set.
						Pref_Base_Up_32 and
						Pref_Limit_Up_32 should also be
						specified according to the
						downstream device Memory
						Range to
						PCIE_CONF_HDR10_TYPE1
						register (PCIE_MAC Base
						address+0x1028) and
						PCIE_CONF_HDR11_TYPE1
						register (PCIE_MAC Base
						address+0x102C) if PFWIN_64B
						(bit 3 of PCIE_BAR_WIN
						(PCIE_MAC Base
						address+0x00FC)) is set. It will be
						filled up by native driver during
						Host boot-up.

3.12.6.8 Register Definition

The PCIe module register consists of:

- The Internal Registers of PCIe Controller
- The PCIe Configuration Space and PCIe Extended Configuration Space, accessible through the PCIe Configuration interface
- The Extended Internal Register of PCIe Controller

Offset	Description		
0x0000 - 0x0FFF	The internal registers of PCIe controller		
0x1000 - 0x1FFF	The PCIe configuration space and PCIe extended configuration space, accessible through the PCIe configuration interface		

Table 3-162 PCIe Module Register Mapping

Offset	Description	
0x2000 - 0x2FFF	Reserved	
0x3000 - 0x3FFF	FF The extended internal registers of PCIe controller	
0x4000 - 0x7FFF	Reserved	

3.12.6.8.1 Internal Register of PCIe Controller

The internal register of PCIe controller can control PCIe controller. It includes Control, Status, Interrupt, and Event registers. It maps to PCIe module register offset 0x0000 (PCIE_MAC Base address+0x0000).

Offset	Description	
0x0000 - 0x017F	Control and status registers	
0x0180 - 0x01FF	Interrupt and event registers	
0x0200 - 0x02FF	Routing, arbitration and priority rules	
0x0300 - 0x03FF	Interface optional feature definitions	
0x0400 - 0x05FF	DMA engines registers	
0x0600 - 0x0BFF	Address translation registers	
0x0C00 - 0x0E7F	Optional features register	
0x0E80 - 0x0EFF	MSI-X control registers	
0x0F00 - 0x0F7F	MSI-X status	
0x0F80 - 0x0FFF	MSI-X pending bit array registers	
0x1000 - 0x1FFF	Configuration space registers	
0x2000 - 0x2FFF	Reserved	
0x3000 - 0x3FFF	Reserved	
0x4000 - 0x7FFF	MSI-X table registers	

Table 3-163 PCIe Internal Register

3.12.6.8.2 PCIe Configuration Space and PCIe Extended Configuration Space

The PCIe Configuration Space and PCIe Extended Configuration Space are accessible through PCIe Configuration Space interface. The Configuration Space register maps to PCIe module register offset 0x1000 (PCIE_MAC Base address+0x1000).

Offset	Description			
0x0000 - 0x003F	Type 0/1 standard PCI configuration header			
0x0040 - 0x007F	Reserved			
0x0080 - 0x00BB	PCIe capability			
0x00BC - 0x00CF	Reserved			
0x00D0 - 0x00DB	MSI-X capability			
0x00DC - 0x00DF	Reserved			
0x00E0 - 0x00F7	MSI capability			
0x00F8 - 0x00FF	PCI power management capability			

Table 3-164 PCIe Configuration Space and PCIe Extended Configuration Space

© 2023-2024 MediaTek Inc. All rights reserved.

Offset	Description
0x0100 - 0x0107	Vendor-Specific capability
0x0108 - 0x010F	LTR capability
0x0110 - 0x011F	L1 PM substates capability
0x0120 - 0x01CF	Reserved
0x01D0 - 0x01DB	PTM capability
0x01DC - 0x01FF	Reserved
0x0200 - 0x0247	AER capability
0x0248 - 0x02FF	Reserved
0x0300 - 0x032B	Secondary PCIe extended capability
0x032C - 0x0FFF	Reserved

3.12.6.9 PCIe PHY

3.12.6.9.1 Overview

The PCIe PHY is responsible for managing the fundamental PCIe protocol and signaling aspects. This includes critical functionalities such as data serialization and de-serialization, 8b/10b encoding/decoding, analog buffers, elastic buffers, and receiver detection mechanisms. The primary objective of this block is to synchronize the data's clock domain from the original PCIe rate to one that is compatible with the general logic.

3.12.6.9.2 Features

- Direct disparity control for use in transmitting compliance pattern(s)
- Clock and Data Recovery (CDR) from serial stream on the PCIe bus
- 8b/10b encoding/decoding and error indication
- 128b/130b encoding/decoding and error indication
- Port 0 supports RC mode
- Port 0 supports x2 link, link rate of 2.5 GT/s, 5.0 GT/s
- Compliant with PCIe Base Specification Revision 3.0
- Compliant with PHY interface for PCIe (PIPE) 4.0
- Supports legacy PCI power management.
- Supports Active State Power Management (ASPM) LOs and L1 states.
- Supports L1 Power Management Substates (L1PMSS) with CLKREQ#.
- Supports the APB interface for PCIe PHY configuration.

3.12.6.9.3 Block Diagram

Figure 3-219 Block Diagram of PCIe PHY

Figure 3-219 depicts the block diagram of the PCIe PHY, which comprises two primary sub-modules.

- Analog PHY (PHYA): Contains the TX driver, serializer, RX front-end, CDR, and de-serializer.
- **Digital PHY (PHYD)**: Includes essential features such as 8b/10b encoding/decoding, and elastic buffers. These elastic buffers are utilized to account for any differences in frequencies between the bit rates at each end of a link, whereby the PCIe Specification stipulates that the elastic buffer can cover a range of ± 300 ppm.

The interface between the PHY and PCIe controller follows the PIPE specification.

Figure 3-220 PCIe 100 MHz Reference Clock (REFCLK) Architecture on PCB
3.12.6.9.4 Function Description

3.12.6.9.4.1 Far-End Loopback Mode

The request for loopback functionality can be conveyed by setting Symbol 5 bit 2 of the Training Sequence (TS1) ordered set. Upon issuing the loopback request, both the MAC (LTSSM) and PHY must be in Loopback mode. Therefore, the PCIe MAC is responsible for controlling the power-down, Loopback, and TXElecIdle features of the PHY through the PIPE interface. Consequently, the PCIe PHY is set to Loopback mode.

Table 3-165 Loopback Mode Defined in PIPE Specification

powerdown[1:0]	TXDectectRX/Loopback	TXElecidle	Description
	0		PHY transmits data. MAC provides data bytes to be sent every clock
		0	cycle.
P0: 2'b00	0	1	PHY does not transmit data and is in electrical idle.
	1	0	PHY goes into loopback mode (Far-end loopback).
	1	1	Illegal. MAC should never do this.

3.12.6.9.4.2 Test Mode for Compliance Test

Upon entering Polling state, the compliance pattern will be transmitted. The Compliance state is designed to evaluate the conformity of the transmitter and interconnect in the device under test setup with the voltage and timing specifications outlined in the PCIe base or CEM standards. To enter polling compliance, one of the following conditions must be met:

- (a) the enter compliance bit in the Link Control 2 register is set to 1'b1 before entering polling active state; or
- (b) a passive test load is applied to all transmitter lanes.

3.12.6.9.5 PCIe Electrical Characteristics

The PCIe electrical characteristics conform to the standards specified in the PCIe Base Specification Revision 4.0 and PCIe Card Electromechanical Specification Revision 4.0 for system board usages.

Description	Min	Тур	Max	Unit
Data rate		2.5		GT/s
Unit interval ⁽¹⁾	399.88	-	400.12	ps
Transmitter parameters				
TX differential peak-to-peak output voltage ⁽²⁾	253	-	1200	mV
TX eye width ⁽²⁾	246	-	-	ps
TX DC differential impedance	80	-	120	Ω
Receiver parameters				
RX eye width ⁽³⁾	287	-	-	ps
RX DC differential impedance	80	-	120	Ω

Table 3-166 PCIe 2.5 GT/s Electrical Characteristics

(1) Do not account for SSC caused variations.

- (2) Refer to PCI Express Card Electromechanical Specification Revision 4.0, Section 4.8.10, Table 24.
- (3) Refer to PCI Express Card Electromechanical Specification Revision 4.0, Section 4.8.1, Table 29.

Table 3-167 PCIe 5.0 GT/S Electrical Characteristics						
Description	Min	Тур	Max	Unit		
Data rate		5.0		GT/s		
Unit interval ⁽¹⁾	199.94	-	200.06	ps		
Transmitter parameters						
TX differential peak-to-peak output voltage ⁽²⁾	225	-	1200	mV		
TX eye width ⁽²⁾	95	-	-	ps		
TX DC differential impedance	-	-	120	Ω		
Receiver parameters						
1.5 to 100 MHz RMS jitter ⁽³⁾	1.4	-	-	ps RMS		
< 1.5 MHz RMS Jitter	3.0			ps RMS		
1.5 – 100 MHz Dj	30			ps PP		
> 100 MHz Dj	27			ps PP		

Table 3-167 PCIe 5.0 GT/s Electrical Characteristics

(1) Do not account for SSC caused variations.

(2) Refer to PCIe Card Electromechanical Specification Revision 3.0, Section 4.8.2, Table 4-7.

(3) Refer to PCIe Card Electromechanical Specification Revision 3.0, Section 4.8.5, Table 4-13.

Table 3-168 PCIe 100 MHz REFCLK Electrical Characteristics

Description	Min	Тур	Max	Unit	
Rising Edge Rate ⁽¹⁾	0.6		4	V/ns	
Falling Edge Rate	0.6		4	V/ns	
Differential Input High Voltage	+150			mV	
Differential Input Low Voltage			-150	mV	
Absolute Crossing Point Voltage (V _{CROSS})	+250		+550	mV	
Variation of V _{CROSS} over all rising clock edges			+140	mV	
Ring-back Voltage Margin (V _{RB})	-100		+100	mV	
Time before V _{RB} is allowed	500			ps	
Average Clock Period Accuracy	-300		+2800	ppm	
Absolute Period (including Jitter	9.847		10.203	ns	
and Spread Spectrum Modulation)	9.047		10.203	115	
Cycle to Cycle jitter			150	ps	
Absolute Max Input Voltage			1.15	V	
Absolute Min Input Voltage	-0.3			V	
Duty Cycle	40		60	%	
Rising edge rate (REFCLK+) to			20	%	
falling edge rate (REFCLK-) matching			20	70	
Clock source DC impedance	40		60	Ω	

(1) Before application of SSC.

3.12.6.9.6 Power Management

Table 3-169 Power Requirement

Description	Min	Тур	Max	Unit
AVDD12 ⁽¹⁾	1.2V-7%	1.2	1.2V+5%	V
AVDD15 ⁽¹⁾	1.5V-7%	1.5	1.5V+5%	V

(1) The power voltage is defined in package ball node and tolerance includes PCB IR and PMIC variation (DC 1% + AC 4%).

3.12.6.10 References

- PCIe Base Specification Revision 3.0
- PCIe Card Electromechanical Specification Revision 3.0
- PCI Power Management Specification Version 1.2
- PHY Interface For the PCIe Version 3.0
- AMBA AXI Specification Version 2.0
- AMBA 4 AXI4 Stream Protocol Specification, Version 1.0 ARM, March 2010

3.12.6.11 Appendix

3.12.6.11.1 Clock Related Signal

Signal	I/O	Width	Description	Remark
pl_pclk	Ι	1	PIPE clock from PHY.	250 MHz
the all (breal)		1	PCIe Transaction Layer and Bridge Layer Clock from SYSTEM.	
tl_clk/br_clk	I	1	The two clocks should belong to the same clock group.	
axi clk250		1	AXI clock from the AXI Bus.	
		1	The clock can be the same as "tl_clk" if AXI runs in "tl_clk" domain.	
ref_clk	1	1	PCIe timer clock from the system.	>= 20 MHz
		1	The clock can be the same as "tl_clk" if "tl_clk" is fixed frequency.	20 MINZ
			AHB/APB interface clock from AHB/APB.	
ahb_apb_clk	I	1	The clock can be the same as "tl_clk" if AHB/APB interface runs in	
			"tl_clk" domain.	
mbist_diag_clk		1	MBIST (Memory Built-In Self-Test) diagnosis clock.	
Indist_diag_cik			If there is no diagnosis circuit in MAC, tie to 0.	
			Indicates the "ref_clk" frequency.	
pcie_ref_clock_freq	I.	22	For example, if ref_clk is 26 MHz, tie to fixed value 26 or register with	
			default value 26.	
			Indicates the "tl_clk" frequency.	
pcie_tl_clock_freq	I	22	For example, if tl_clk is 200 MHz, tie to fixed value 200 or register	
			with default value 200.	
scan_clk	1	1	DFT related signal	
		-	If the DFT flow is not expected to initiate currently, tie to 0.	

3.12.6.11.2 AHB Slave Interface

Signal	I/O	Width	Description
ahb_pcie_hsel	I	1	Each AHB slave has its own slave select signal and this signal indicates that the current transfer is intended for the selected slave.
ahb_pcie_htrans	I	2	Indicates the type of the current transfer, which can be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.
ahb_pcie_haddr	Ι	32	The 32-bit system address bus.
ahb_pcie_hwrite	Ι	1	When HIGH, this signal indicates a write transfer and when LOW, a read transfer.
ahb_pcie_hsize	I	2	Indicates the size of the transfer, which is typically byte (8-bit), halfword (16-bit) or word (32-bit).
ahb_pcie_hwdata	I	32	The write data bus is used to transfer data from the master to the bus slaves during write operations.
ahb_pcie_hbstrb	I	4	Indicates which byte in HWDATA will be written in a write transfer. If AHB master does not support write strobe, just tie the signal to 4'hf.
ahb_pcie_hready	I	1	When HIGH, the HREADY_IN signal informs all slaves that the previous transfer is complete.
ahb_pcie_slv_hrdata	0	32	The read data bus is used to transfer data from bus slaves to the bus master during read operations.
ahb_pcie_slv_hready	0	1	When HIGH, the HREADY signal indicates that a transfer has finished on the bus.

3.12.6.11.3 AXI Master Interface

The table below enumerates the signals present in the AXI4 master 0 interface. These signals are also utilized for the following interface signals:

- AXI4 Master 1 (axi4_mst1_)
- AXI4 Master 2 (axi4_mst2_)
- AXI4 Master 3 (axi4_mst3_)

Signal	Width	I/O	Description
axi4_mst0_awid	4	0	Write address ID
axi4_mst0_awaddr	64	0	Write address bus
axi4_mst0_awregion	4	0	Write region
axi4_mst0_awlen	8	0	Burst length
axi4_mst0_awsize	3	0	Burst size
axi4_mst0_awburst	2	0	Burst type
axi4_mst0_awlock	1	0	Lock type
axi4_mst0_awcache	4	0	Cache type
axi4_mst0_awprot	3	0	Protection type
axi4_mst0_awqos	4	0	QoS value

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Signal	Width	I/O	Description
axi4_mst0_awfunc	12	0	 Function Number: When several physical and/or virtual functions are implemented, this signal indicates which function has initiated the request. Bit [8:0]: Virtual Function Number: 0 indicates that the physical function has initiated the request, 1 - 511 indicate that one of the virtual functions 1 to 511 has initiated the request. This signal must be tied to 0s if virtual functions are not implemented. Bit [11:9]: Physical Function Number This signal must be tied to 0s if only one physical function is implemented.
axi4_mst0_awuser	32	0	 Write Address user side band signal: Bit [0]: Asserted to 1b when an ECRC error is detected in the AXI Burst Bit [1]: Asserted to 1b when a PCIe Memory Error (Poisoned TLP Reception or Receive Buffer Memory Error) is detected in the AXI Burst Bit [2]: Asserted to 1b when a Bridge Buffer Memory Error is detected in the AXI Burst Bit [3]: Asserted to 1b when an AXI Application Data Error is detected in the AXI Burst Bit [3]: Asserted to 1b when an AXI Application Data Error is detected in the AXI Burst (only relevant if the transaction's requester is an AXI slave Interface). Bit [7:4]: Provides the transaction's requester module. Allowed values for this field are: 4'd0: PCIe RX Interface, received on even BAR 4'd1: PCIe RX Interface, received on odd BAR 4'd2: AXI4-Lite Slave Interface 4'd4 + k: AXI4 Slave Number k=0 - 3 Interface 4'd4 + k: DMA Engine Number k=0 - 7 Bit [9:8]: Address Type (00b: Untranslated, 01b: Translation Request, 10b: Translated) Bit [10]: Reserved Bit [12:11]: When the transaction's requester module is the PCIe RX Interface, this field indicates from which BAR the request has come. Allowed values for this field are: 2'd0: Request was received on BAR0 when AXI4_MST0_AWUSER[4]=1 2'd1: Request was received on BAR2 when AXI4_MST0_AWUSER[4]=1

Signal	Width	I/O	Description
			 2'd2: Request was received on BAR4 when
			AXI4_MST0_AWUSER[4]=0, or on BAR5 when
			AXI4_MST0_AWUSER[4]=1
			 2'd3: Request was received on expansion ROM
			Bit [13]: PCIe attribute value for No Snoop
			Bit [14]: PCIe attribute value for relaxed ordering
			Bit [15]: PCIe attribute value for ID-based ordering
			Bit [31:16]: PCIe requester ID
axi4_mst0_awvalid	1	I	Write address valid
axi4_mst0_awready	1	0	Write address ready
axi4_mst0_wid	4	0	Write ID (for AXI3; unused in AXI4)
axi4_mst0_wdata	64, 128, or 256	0	Write ID (for AXI3; unused in AXI4)
			Write Data Error:
			• If G_DATA_PROT=0:
			 Bit [0]: Bridge Buffer uncorrectable read error: this bit is asserted
			when an uncorrectable error has been detected by the memory's
			ECC logic when reading data from the PCIe2AXI buffer. The error
			is reported on the same clock cycle as the affected data.
			 Bit [31:1]: Reserved
			• If G_DATA_PROT=1:
			 Bit [0]: Parity for AXI4_MST0_WDATA[31:0]
			 Bit [3:1]: Reserved
			 Bit [4]: Parity for AXI4_MST0_WDATA[63:32]
			 Bit [7:5]: Reserved
axi4_mst0_wderr	8, 16, or 32	ο	 Bit [28]: Parity for AXI4_MST0_WDATA[255:224]
	0, 10, 01 02	Ũ	 Bit [31:29]: Reserved
			• If G_DATA_PROT=4:
			 Bit [0]: Parity for AXI4_MST0_WDATA[7:0]
			 Bit [0]: Parity for AXI4_MST0_WDATA[15:8]
			 Bit [31]: Parity for AXI4_MST0_WDATA[255:248]
			When data protection is implemented (G_DATA_PROT =1 or =4), this
			signal contains the data protection bits for the data transmitted on
			AXI4_MST0_WDATA on the same clock cycle.
			Note that parity is not checked for 8-bit bytes or 32-bit words that are
			not valid, as indicated by AXI4_MST0_WSTRB on the same clock cycle.
			Note also that bridge buffer uncorrectable read errors are reported by
			corrupting all data protection bits on the same clock cycle as the
			affected data.
axi4_mst0_wstrb	8, 16, or 32	0	Write strobes

Signal	Width	I/O	Description
axi4_mst0_wlast	1	0	Write last
axi4_mst0_wvalid	1	0	Write valid
axi4_mst0_wready	1	Ι	Write ready
axi4_mst0_bid	4	Ι	Response ID
axi4_mst0_bresp	2	I	Write response
axi4_mst0_bvalid	1	I	Write response valid
axi4_mst0_bready	1	0	Write response
axi4_mst0_arid	4	0	Read address ID
axi4_mst0_araddr	64	0	Read address bus
axi4_mst0_arregion	4	0	Read region
axi4_mst0_arlen	8	0	Burst length
axi4_mst0_arsize	3	0	Burst size
axi4_mst0_arburst	2	0	Burst type
axi4_mst0_arlock	1	0	Lock type
axi4_mst0_arcache	4	0	Cache type
axi4_mst0_arprot	3	0	Protection type
axi4_mst0_arqos	4	0	QoS value
axi4_mst0_arfunc	12	0	 Function Number: When several physical and/or virtual functions are implemented, this signal indicates which function has initiated the request. Bit [8:0]: Virtual Function Number: 0 indicates that the physical function has initiated the request, 1 - 511 indicate that one of the virtual functions 1 to 511 has initiated the request. This signal must be tied to 0s if virtual functions are not implemented. Bit [11:9]: Physical Function Number This signal must be tied to 0s if only one physical function is implemented.
axi4_mst0_aruser	32	0	 Read Address user side band signal: Bit [0]: Asserted to 1b when an ECRC error is detected in the AXI Burst Bit [1]: Asserted to 1b when a PCle Memory Error (Poisoned TLP Reception or Receive Buffer Memory Error) is detected in the AXI Burst Bit [2]: Asserted to 1b when a Bridge Buffer Memory Error is detected in the AXI Burst. Bit [3]: Asserted to 1b when an AXI Application Data Error is detected in the AXI Burst (only relevant if the transaction's requester is an AXI slave Interface). Bit [7:4]: Provides the transaction's requester module. Allowed values for this field are: 4'd0: PCle RX Interface, received on even BAR

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Signal	Width	I/O	Description
			 4'd1: PCIe RX Interface, received on odd BAR
			 4'd2: AXI4-Lite Slave Interface
			 4'd4 + k: AXI4 Slave Number k=0 - 3 Interface
			 4'd8 + k: DMA Engine Number k=0.7
			 Bit [9:8]: Address Type (00b: Untranslated, 01b: Translation Request, 10b: Translated)
			• Bit [10]: Translation Request No Write (NW) flag
			• Bit [12:11]: When the transaction's requester module is PCIe RX
			Interface, this field indicates from which BAR the request has come.
			Allowed values for this field are:
			 2'd0: Request was received on BAR0 when
			AXI4_MST0_ARUSER[4]=0, or on BAR1 when
			AXI4_MST0_ARUSER[4]=1
			 2'd1: Request was received on BAR2 when
			AXI4_MST0_ARUSER[4]=0, or on BAR3 when
			AXI4_MST0_ARUSER[4]=1
			 2'd2: Request was received on BAR4 when
			AXI4_MST0_ARUSER[4], or on BAR5 when
			AXI4_MST0_ARUSER[4]=1
			 2'd3: Request was received on Expansion ROM
			Bit [13]: PCIe Attribute value for No Snoop
			• Bit [14]: PCIe Attribute value for Relaxed Ordering
			Bit [15]: PCIe Attribute value for ID-Based Ordering
			• Bit [31:16]: PCIe Requester ID
axi4_mst0_arvalid	1	0	Read address valid
axi4_mst0_arready	1	I	Read address ready
axi4_mst0_rid	4	Ι	Response ID
axi4_mst0_rdata	64, 128, or 256	I	Read data
			Read Data Error:
			• If G_DATA_PROT=0:
			 Bit [0]: Buffer uncorrectable read error: this bit allows the
			application to report a data error in the data phase(s) in which
			it is asserted.
			– Bit [31:1]: Reserved.
axi4_mst0_rderr	8, 16, or 32	1	• If G_DATA_PROT=1:
	0, 20, 01 02		 Bit [0]: Parity for AXI4_MST0_RDATA[31:0]
			 Bit [0]: 1 any 10 AA4_INSTO_NOAIA[51:0] Bit [3:1]: Reserved
			 Bit [4]: Parity for AXI4_MST0_RDATA[63:32]
			 Bit [4]: Failty for AAI4_INSTO_KDAIA[05.52] Bit [7:5]: Reserved
			 Bit [28]: Parity for AXI4_MST0_RDATA[255:224]
			טוג נצטן. רמווגץ וטו אאוא_ועוטוע הטאואנצסס.224

© 2023-2024 MediaTek Inc. All rights reserved.

Signal	Width	I/O	Description		
			– Bit [31:29]: Reserved		
			• If G_DATA_PROT=4:		
			 Bit [0]: Parity for AXI4_MST0_RDATA[7:0] 		
			 Bit [0]: Parity for AXI4_MST0_RDATA[15:8] 		
			 Bit [31]: Parity for AXI4_MST0_RDATA[255:248] 		
			When data protection is implemented (G_DATA_PROT =1 or =4), this		
			signal contains the data protection bits for the data transmitted on		
			AXI4_MST0_RDATA on the same clock cycle. Note that parity is not		
			checked for 8-bit bytes or 32-bit words that are not valid, as indicated by		
			AXI4_MST0_ARADDR/ARSIZE/ARLEN on the same clock cycle.		
axi4_mst0_rresp	2	I	Read response		
axi4_mst0_rlast	1	I	Read last		
			Read user side band signal:		
			• Bit [3:0]: Reserved		
avid meto rucar	32		• Bit [4]: Asserted to 1b to indicate that this burst must be discarded.		
axi4_mst0_ruser	32	1	If the device that initiated the read request is a PCIe device, then this		
			device will later detect a PCIe Completion timeout.		
			• Bit [31:5]: Reserved		
axi4_mst0_rvalid	1	I	Read valid		
axi4_mst0_rready	1	0	Read ready		

3.12.6.11.4 AXI4 Slave Interfaces

The following table lists the signals in the AXI4 Slave 0 interface. The same signals are used for the AXI4 Slave 1 (axi4_slv1_), AXI4 Slave 2 (axi4_slv2_), and AXI4 Slave 3 (axi4_slv3_) interface signals.

Signal	Width	I/O	Description
axi4_slv0_awid	4	I	Write address ID
axi4_slv0_awaddr	64	I	Write address bus
axi4_slv0_awregion	4	I	Write region
axi4_slv0_awlen	8	I	Burst length
axi4_slv0_awsize	3	I	Burst size
axi4_slv0_awburst	2	I	Burst type
axi4_slv0_awlock	1	I	Lock type
axi4_slv0_awcache	4	I	Cache type
axi4_slv0_awprot	3	I	Protection type
axi4_slv0_awqos	4	I	QoS value
axi4_slv0_awfunc	12	I	Function Number: When several physical and/or virtual functions are implemented, this signal indicates which function has initiated the request.

© 2023-2024 MediaTek Inc. All rights reserved.

Description

Signal

Width

I/O

			Bit [8:0]: Virtual Function Number:
			 — 0 indicates that the physical function has initiated the
			request,
			 1 - 511 indicate that one of the virtual functions 1 to 511
			has initiated the request.
			This signal must be tied to 0s if virtual functions are not implemented.
			Bit [11:9]: Physical Function Number
			This signal must be tied to 0s if only one physical function is
			implemented.
axi4_slv0_awvalid	1	I	Write address valid
axi4_slv0_awready	1	0	Write address ready
axi4_slv0_wid	4	I	Write ID (for AXI3; unused in AXI4)
axi4_slv0_wdata	64, 128, or 256	I	Write data
			Write Data Error:
			• If G_DATA_PROT=0:
			 Bit [0]: Buffer uncorrectable read error: this bit allows the
			application to report a data error in the data phase(s) in
			which it is asserted.
			 Bit [31:1]: Reserved.
			• If G_DATA_PROT=1:
			 Bit [0]: Parity for AXI4_SLV0_WDATA[31:0]
			 Bit [3:1]: Reserved
			 Bit [4]: Parity for AXI4_SLV0_WDATA[63:32]
			 Bit [7:5]: Reserved
axi4 slv0 wderr	8, 16, or 32		
	0, 20, 0. 02		 Bit [28]: Parity for AXI4_SLV0_WDATA[255:224]
			 Bit [31:29]: Reserved
			• If G_DATA_PROT=4:
			 Bit [0]: Parity for AXI4_SLV0_WDATA[7:0]
			 Bit [0]: Parity for AXI4_SLV0_WDATA[15:8]
			 Bit [31]: Parity for AXI4_SLV0_WDATA[255:248]
			When data protection is implemented (G_DATA_PROT =1 or =4),
			this signal contains the data protection bits for the data
			transmitted on AXI4_SLV0_WDATA on the same clock cycle. Note that parity is not checked for 8-bit bytes or 32-bit words that are
			not valid, as indicated by AXI4_SLV0_WSTRB on the same clock
			cycle.
axi4_slv0_wstrb	8, 16, or 32	I	Write strobes
axi4_slv0_wlast	1	I	Write last
axi4_slv0_wvalid	1	I	Write valid
axi4_slv0_wready	1	0	Write ready
axi4_slv0_bid	4	0	Response ID

© 2023-2024 MediaTek Inc. All rights reserved.

Page 334 of 472

Signal	Width	I/O	Description	
axi4_slv0_bresp	2	0	Write response	
axi4_slv0_bvalid	1	0	Write response valid	
axi4_slv0_bready	1	I	Response ready	
axi4_slv0_arid	4	I	Read address ID	
axi4_slv0_araddr	64	I	Read address bus	
axi4_slv0_arregion	4	I	Read region	
axi4_slv0_arlen	8	I	Burst length	
axi4_slv0_arsize	3	I	Burst size	
axi4_slv0_arburst	2	I	Burst type	
axi4_slv0_arlock	1	I	Lock type	
axi4_slv0_arcache	4	I	Cache type	
axi4_slv0_arprot	3	I	Protection type	
axi4_slv0_arqos	4	I	QoS value	
axi4_slv0_arfunc	12	I	 Function Number: When several physical and/or virtual functions are implemented, this signal indicates which function has initiated the request. Bit [8:0]: Virtual Function Number: 0 indicates that the physical function has initiated the request 1 - 511 indicate that one of the virtual functions 1 to 511 has initiated the request. This signal must be tied to 0s if virtual functions are not implemented. Bit [11:9]: Physical Function Number This signal must be tied to 0s if only one physical function is implemented. 	
axi4_slv0_arvalid	1	I	Read address valid	
axi4_slv0_arready	1	0	Read address ready	
axi4_slv0_rid	4	0	Response ID	
axi4_slv0_rdata	64, 128, or 256	0	Read data	
axi4_slv0_rderr	8, 16, or 32	0	 Read Data Error: If G_DATA_PROT=0: Bit [0]: Bridge Buffer uncorrectable read error: this bit is asserted when an uncorrectable error has been detected by the memory's ECC logic when reading data from the PCle2AXI buffer. The error is reported on the same clock cycle as the affected data. Bit [31:1]: Reserved. If G_DATA_PROT=1: Bit [0]: Parity for AXI4_SLV0_RDATA[31:0] Bit [3:1]: Reserved Bit [4]: Parity for AXI4_SLV0_RDATA[63:32] 	

Signal	Width	I/O	Description
			 Bit [7:5]: Reserved Bit [28]: Parity for AXI4_SLV0_RDATA[255:224] Bit [31:29]: Reserved If G_DATA_PROT=4: Bit [0]: Parity for AXI4_SLV0_RDATA[7:0] Bit [0]: Parity for AXI4_SLV0_RDATA[15:8] Bit [31]: Parity for AXI4_SLV0_RDATA[255:248] When data protection is implemented (G_DATA_PROT = 1 or = 4), this signal contains the data protection bits for the data transmitted on AXI4_SLV0_RDATA on the same clock cycle. Parity is not checked for 8-bit bytes or 32-bit words that are not valid, as indicated by AXI4_SLV0_ARADDR/ARSIZE/ARLEN. Bridge Buffer uncorrectable read errors are reported by corrupting all data protection bits on the same clock cycle as the affected data.
axi4_slv0_rresp	2	0	Read response
axi4_slv0_rlast	1	0	Read last
axi4_slv0_ruser	32	0	 Read user side band signal: Bit [0]: Asserted to 1b when an ECRC error is detected in the AXI Burst Bit [1]: Asserted to 1b when a PCIe Memory Error (Poisoned TLP Reception or Receive Buffer Memory Error) is detected in the AXI Burst Bit [2]: Asserted to 1b when a Bridge Buffer Memory Error is detected in the AXI Burst Bit [2]: Asserted to 1b when a Bridge Buffer Memory Error is detected in the AXI Burst Bit [3]: Reserved Bit [4]: Asserted to 1b to indicate that this AXI Burst was inferred by the Bridge due to a PCIe completion timeout or a discarded AXI packet (with the read response = SLVERR) Bit [12:5]: Reserved Bit [13]: PCIe Attribute value for No Snoop Bit [14]: PCIe Attribute value for Relaxed Ordering Bit [15]: PCIe Attribute value for ID-Based Ordering Bit [31:16]: PCIe Completer ID
axi4_slv0_rvalid	1	0	Read valid
axi4_slv0_rready	1	Ι	Read ready

3.12.6.11.5 PIPE Interface

Signal	I/O	Width	Description
pl_powerdown (common to all lanes)	0	2	Power Down: determines the power state (PO, POs, P1, or P2).
pl_rate (common to all lanes)	0	2	 Link Signaling Rate: controls the link signaling rate: 00: Use 2.5 GT/s signaling rate 01: Use 5.0 GT/s signaling rate 10: Reserved 11: Reserved
pl_width (common to all lanes)	0	2	 PIPE Interface Width: indicates current PIPE interface width 00: 8-bit 01: 16-bit 10: 32-bit 11: 64-bit This signal can be left unconnected if not present on the PHY
pl_pclk_rate (common to all lanes)	0	3	 PIPE Interface Clock Rate: indicates current PIPE interface clock rate 000: 62.5 MHz 001: 125 MHz 010: 250 MHz 011: 500 MHz 100: 1 GHz 111: 101: Reserved This signal can be left unconnected if not present on the PHY.
pl_txmargin (common to all lanes)	0	3	Transmit Margin: selects transmitter voltage levels.
pl_txswing (common to all lanes)	0	1	Transmitter Voltage Swing Level
pl_txdeemph (common to all lanes)	0	2	Transmitter Deemphasis at 5.0 GT/s Only for Gen2 PHY.
pl_txdetectrx_common (common to all lanes)	0	1	Transmit Detect Receive: Prompts the PHY to start a receiver detection operation or to begin loopback. If the PHY has a single TX/RX Detect input, please use the signal.
pl_l1ss_l1ss_en (common to all lanes)	0	1	For L1SS Function. Enable L1SS function in PHY. Proprietary signal for MediaTek PHY. This signal can be left unconnected if not present on the PHY.
pl_l1ss_rx_ei_dis	0	1	For L1SS Function.

© 2023-2024 MediaTek Inc. All rights reserved.

Signal	I/O	Width	Description
(common to all lanes)			Disable electrical idle detect logic in PHY.
			Proprietary signal for MediaTek PHY.
			This signal can be left unconnected if not present on the
			PHY.
			For L1SS Function.
n lan tu an dia			Disable transmitter DC common mode logic in PHY.
pl_l1ss_tx_cm_dis	0	1	Proprietary signal for MediaTek PHY.
(common to all lanes)			This signal can be left unconnected if not present on the
			PHY.
			For L1SS Function.
			Indicate MAC is in L1.2 state including L1.2_ETNRY/
pl_l1ss_l1p2_prd			L1.2_IDLE/ L1.2_EXIT
(common to all lanes)	0	1	Proprietary signal for MediaTek PHY.
			This signal can be left unconnected if not present on the
			PHY.
			For SRIS Function.
pl_sris_enable			Enable SRIS function in PHY.
(common to all lanes)	0	1	This signal can be left unconnected if not present on the
			PHY.
			Transmit Detect Receive:
		N_L	Prompts the PHY to start a receiver detection operation or
pl_txdetectrx	О		to begin loopback.
(per lane)			If the PHY has per-lane TX-Detect-RX input, please use the
			signal.
pl_txdata	0	G_PCIE_PIPE_IF	Transmit Data
(per lane)	0	_W*8*N_L	Transmit Data
pl_txdatak		G_PCIE_PIPE_IF	Transmit Data Control
(per lane)	0	_W_G2*N_L	The DATAK width depends on Gen2 data width.
pl_txelecidle		N. 1	Transmit Electrical Idle:
(per lane)	0	N_L	Forces the transmit output to electrical idle.
			Transmit Compliance:
pl_txcompliance			Forces the running disparity to negative in Compliance
(per lane)	0	N_L	mode (negative COM character) and can also be used to
			turn off Lanes that are not initialized
al maalarite			Receive Polarity:
pl_rxpolarity	0	N_L	Prompts the PHY layer to perform a polarity inversion on
(per lane)			the receiver decoding block.
			PHY RX Control. This signal can be left unconnected if this
pl_rxstandby			port does not exist on the PHY.
(per lane)	, O N_I		This signal can be left unconnected if not present on the
			PHY.
pl_phystatus	I	N_L	PHY Status:
	1	1	

Signal	I/O	Width	Description
(per lane)			If PHY has a single PHY status output, the same value can
			be replicated on all PL_PHYSTATUS bits.
pl_rxstatus		3*N L	Receive Status: encodes receive status and error codes for
(per lane)	1	S'IN_L	the receive data stream and receiver detection.
pl_rxdata		G_PCIE_PIPE_IF	Receive Data
(per lane)	I	_W*8*N_L	Receive Data
pl_rxdatak		G_PCIE_PIPE_IF	Receive Data Control
(per lane)	1	_W_G2*N_L	The DATAK width depends on Gen2 data width.
pl_rxelecidle		N. I	Receive Electrical Idle: indicates-that electrical idle is
(per lane)		N_L	detected on receiver lane.

3.12.6.11.6 IO Related Signals

Signal Name	Туре	Description	Ball Location
PCIe Control Signals Port			
PERSTN	DO	Fundamental reset	AA3, AA8
CLKREQN	DIO	Clock request	AA1, AC8
WAKEN	DI	Link reactivation	AA4, AB3
PCIe Port		·	
PCIE_CKN ⁽¹⁾	AI	Deference clock differential pair	AN3
PCIE_CKP ⁽¹⁾	AI	 Reference clock differential pair 	AN4
PCIE_LN0_RXN	AI		AP1
PCIE_LNO_RXP	AI	 Lane 0 receive data differential pair 	AP2
PCIE_LN0_TXN	AO		AM2
PCIE_LN0_TXP	AO	 Lane 0 transmit data differential pair 	AM1

(1) Connect this pin through an external 49.9 Ω (1%) resistor to GND.

3.12.6.11.7 Interrupt Related Signals

Signal	I/O	Width	Description	Note
pcie_interrupt_out	0	1	PCIe main interrupt output. It is a level signal and is active high.	tl_clk domain

3.12.7 Keypad Scanner (Keypad)

3.12.7.1 Keypad Overview

The keypad module implements a scanning algorithm for hardware-based key press decoding and reduces CPU overhead.

3.12.7.2 Keypad Features

The keypad module supports the following features:

- Two types of keyboards:
 - 2 × 2 single keys
 - 2 × 2 configurable double keys
 - Configurable key debounce time
- The double keypad supports an 8-key matrix divided into 4 subgroups of 2 keys and a 20 Ω resistor
- Key detection block providing key press, key release, and de-bounce mechanisms
- Interrupt event detection for key presses and key releases
- Detection of one or two keys pressed simultaneously with any combination

3.12.7.3 Keypad Block Diagram

The keypad module contains 2 submodules, KPO and KP1. KPO supports single keys, and KP1 supports double keys. Figure 3-221 and Figure 3-222 show the structural block diagrams of Keypad Top and KP1.

Figure 3-221 Block Diagram of Keypad Top

Figure 3-222 KP1 Block Diagram

KP1 comprises the following modules:

Table 3-170 KP1 Module Description

Module	Description
Kp_register	The register control module, housing the registers the APB can read and write. It is also responsible for sampling the present state of the keys.
Kp_scanner	Scans the keypad state.
Kp_FSM	Manages the working flow of the keypad and generates an IRQ signal.
Kp_counter	Counts the de-bounce time.

3.12.7.4 Keypad Signal Descriptions

Table 3-171 presents keypad signal descriptions.

Signal Name	Туре	Description	Ball Location
KPCOL0	DIO	KeyPad column 0	H31
KPCOL1	DIO	KeyPad column 1	J31
KPROW0	DIO	KeyPad row 0	J30
KPROW1	DIO	KeyPad row 1	К30

3.12.7.5 Keypad Function Description

The keypad module supports two types of keypads: 2 × 2 single keys and 2 × 2 configurable double keys. The keypad interface includes 2 columns and 2 rows (see Figure 3-221). The key detection block provides the key pressed, key released and de-bounce mechanisms.

Each time the key is pressed or released, i.e. something different in the 2 × 2 matrix, the key detection block senses the change and recognizes if a key has been pressed or released. Whenever the key status changes and becomes stable, a keypad IRQ is issued. Then, the MCU can read the key(s) pressed directly in the KP_MEM1 and KP_MEM2 registers. The status register can only be changed by the key press detection FSM.

3.12.7.6 Keypad Theory of Operations

Key press detection depends on the HIGH or LOW level of the external keypad interface. If the keys are pressed at the same time, and a key shares the same column and the same row with other keys, the pressed key cannot be correctly decoded. For example, if there are three keys pressed: key1 = (x1, y1), key2 = (x2, y2), and key3 = (x1, y2), both key3 and key4 = (x2, y1) are detected, and therefore, they cannot be distinguished correctly. Hence, the keypad detects only one key or two keys pressed simultaneously in any combination. Pressing more than two keys simultaneously in a specific pattern may cause wrong information retrieval.

When the state of the key matrix changes, there is a de-bounce time. Set a suitable de-bounce time before enabling the Keypad. If the time value is set too small, the Keypad becomes overly sensitive and detects multiple unexpected key presses.

3.12.7.7 Keypad Programming Guide

Table 3-172 presents Keypad setting flow.

Step	Address	Register Name	MSB	LSB	Local Address	R/W	Default Value	Description				
Set up	Set up keypad											
1	keypad base address + 0x020	KP_SEL	0	0	KP_SEL	RW	1'b0	Select the single keypad or the double keypad function				
2	keypad base address + 0x018	KP_DEBOUNCE	13	0	DEBOUNCE	RW	14'h400	Set de-bounce time. De-bounce time = KP_DEBOUNCE/32 ms.				
3	keypad base address + 0x024	KP_EN	0	0	KP_EN	RW	1'd0	Enable keypad scanner				
Wait fo	or keypad to issue a	n interrupt and rea	d keypa	d MEM r	egister.							
4	keypad base address + 0x000	KP_STA	0	0	STA	RO	1'b0	Read keypad status 0: No key pressed 1: Key pressed				
5	keypad base address + 0x004	KP_MEM1	15	0	KEY15~KEYO	RO	16'hffff	Read keypad MEM register				
6	keypad base address + 0x008	KP_MEM2	15	0	KEY31~KEY16	RO	16'hffff	Read keypad MEM register				

Table 3-172 Keypad Setting Flow

3.12.7.8 Keypad Applications

The 2 × 2 double Keypad supports a 2 × 2 × 2 = 8-key matrix. The 8 keys are divided into 4 subgroups, and each group consists of 2 keys and a 20 Ω resistor.

Figure 3-223 represents a 2 × 2 double Keypad matrix (8 keys) example configuration.

Figure 3-223 2 × 2 KeyPad Matrix (8 Keys)

3.12.8 General-purpose Input/Output (GPIO)

3.12.8.1 Overview

The General-Purpose Input/Output (GPIO) peripheral provides dedicated pins that are configurable as either inputs or outputs. Each GPIO pin has the following key functions:

- Configurable direction: Input or output
- Control of the state driven on the output pin when GPIO is configured as an output
- Detection of the state of the pin when GPIO is configured as an input
- Configurable interrupt event generation

3.12.8.2 Features

3.12.8.2.1 Pad Pin List

The MT8370 offers the following types of pin control for GPIO. The corresponding I/O cells are described in the tables below.

I/O Cell	Table
General 1.8V I/O cell	Table 3-175
KP2K I/O cell	Table 3-176
KP200K I/O cell	Table 3-177
I3C I/O cell	Table 3-178
RST I/O cell	Table 3-179
MSDC3A18 I/O cell	Table 3-180
MSDC3A18OD33 I/O cell	Table 3-181
AGPIO General 1.8V I/O cell	Table 3-182

Table 3-173 GPIO Pin Control

Pin	Description						
	The pad can be used in either Transmit (TX) or Receive (RX) mode, which is configured by the E pin of						
Epin	the pad.						
L pin	• E = 1, TX mode, the TX path is from I to I/O.						
	• E = 0, RX mode, the RX path is from I/O to O.						
E2/E4/E8 pin	To configure the TX driving strength. See Table 3-174 for details.						
	To control the RX input buffer.						
IES pin	• IES = 1, the RX path is enabled						
	• IES = 0, the RX path is disrupted, and O pin is 0						
SMT pin	Schmitt trigger hysteresis control						
PU/PD pin	To pull up or pull down the resistor.						

Table 3-174 Driving Strength Control

{E8, E4, E2}	Driving Strength (mA)
3'b000	2
3'b001	4
3'b010	6
3'b011	8
3'b100	10
3'b101	12
3'b110	14
3'b111	16

3.12.8.2.2 I/O Cell

Table 3-175 General 1.8V I/O Cell

Pin Description	Туре	Level	Description	Note
I	Input	0.75V	Input signal of driver	
ю	Input/ Output	1.8V	Data input/output. Output pin of driver (TX mode)/input pin of receiver (RX mode)	

© 2023-2024 MediaTek Inc. All rights reserved.

Pin Description	Туре	Level	Description	Note			
F	Input	0.75V	To enable output. High asserted.				
E	Input	0.750	E = 1, TX mode; E = 0, RX mode.				
				Register programmable 2G Type			
				(E8, E4, E2):			
E2, E4, E8	Input	0.75V	TX driving strength control	2mA: [000] 10mA: [100]			
, _ ,,				4mA: [001] 12mA: [101]			
				6mA: [010] 14mA: [110]			
				8mA: [011] 16mA: [111]			
0	Output	0.75V	Output signal of RX receiver				
			To enable RX input buffer. High asserted data path:				
IES	Input	0.75V	from IO to O. IES = 0, O = 0				
			For VIO turn-off applications, IES = 0 prevents				
			leakage in VDDIO power domain.				
			To enable RX input buffer Schmitt trigger hysteresis				
SMT Input		0.75V	control. High asserted.	Register programmable			
			SMT= 1, Schmitt trigger enabled				
PU	Input	0.75V	75K pull-up resistor control. High activation	Register programmable			
PD	Input	0.75V	75K pull-down resistor control. High activation	Register programmable			
			RX duty selection				
			• RDSEL[0]: Level shifter duty high when asserted	Register programmable			
RDSEL[1:0]	Input	0.75V	(high pulse width adjustment)	Default setting:			
			• RDSEL[1]: Level shifter duty low when asserted	1.8V: RDSEL[1:0]=[00]			
			(low pulse width adjustment)				
				Register programmable			
				Default setting:			
				1.8V: TDSEL[3:0]=[0000]			
			TX duty selection	1.2V: TDSEL[3:0]=[0000]			
			• TDSEL[2][0]: Output level shifter duty high				
TDSEL[3:0]	Input	0.75V	when asserted (high pulse width adjustment)	*Please set BIAS control pin,			
			• TDSEL[3][1]: Output level shifter duty low when				
			asserted (low pulse width adjustment)	1.2V: BSEL0=1, BDSEL[1:0]=[00]			
				*Please set TDSEL[3:0]=[1111]			
				@ if VCCK is lower than 0.4V.			

Table 3-176 KP 2K I/O Cell

Pin Description	Туре	Level	Description	Note
I	Input	0.75V	Input signal of driver	
ю	Input/ Output	1.8V	Data input/output. Output pin of driver (TX mode)/input pin of receiver (RX mode)	

© 2023-2024 MediaTek Inc. All rights reserved.

Pin Description	Туре	Level			Description	N	ote		
E	Input	0.75V	To enable c	output.	High asserted.				
L	mput	0.750	E = 1, TX m	ode; E	= 0, RX mode.				
E2, E4, E8	Input	0.75V	TX driving s	trengtl	n control	Register program (E8, E4, E2): 2mA: [000] 4mA: [001] 6mA: [010] 8mA: [011]	nmable 2G Type 10mA: [100] 12mA: [101] 14mA: [110] 16mA: [111]		
0	Output	0.75V	Output sigr	nal of R	X receiver			1011/1.[111]	
IES	Input	0.75V	To enable R from IO to (For VIO tur	RX inpu O. IES = n-off aj	t buffer. High asse				
SMT	Input	0.75V	control. Hig	gh asse	t buffer Schmitt tr rted. rigger enabled	Register program	nmable		
PUPD	Input	0.75V	PUPD R1 R0 R value				Register programmable		
RO	Input	0.75V	0 0	0	High Z		Register program	nmable	
R1	Input	0.75V	0 0 0 1 0 1 1 0 1 0 1 1 1 1 75K/2K mea	0 1 0 1 0 1 0 1 1	PU-75K PU-2K PU-75K/2K High Z PD-75K PD-2K PD-75K/2K rallel connection of	f resistance.	Register programmable		
RDSEL[1:0]	Input	0.75V	(high p • RDSEL[0]: Lev ulse wi 1]: Lev	el shifter duty hig idth adjustment) el shifter duty low dth adjustment)	Register prograr Default setting: RDSEL[1:0]=[00] Register prograr	1.8V:		
TDSEL[3:0]	Input	0.75V	when a • TDSEL[2][0]: (asserte 3][1]: (Dutput level shifte d (high pulse widt Dutput level shifte pulse width adjus	Default setting: 1.8V: TDSEL[3:0 1.2V: TDSEL[3:0 *Please set BIAS 1.8V: BSEL0=0, E 1.2V: BSEL0=1, E]=[0000]]=[0000] 5 control pin, 3DSEL[1:0]=[00]		

Pin Description	Туре	Level	Description	Note
				if VCCK is lower than 0.4V.

Pin Description	Туре	Level				Description		Note		
I	Input	0.75V	Input sig	gnal o	f driv	er				
	Input/		Data inp	ut/o	utput.					
ю	Output	1.8V	Output p	oin of	drive	er (TX mode)/input				
	Output		(RX mod	le)						
E	Input	0.75V	To enab	le out	tput. l	High asserted.				
			E = 1, TX	mod	e; E =	0, RX mode.				
									mmable 2G Type	
								(E8, E4, E2):	,	
E2, E4, E8	Input	0.75V	TX drivir	ng stro	ength	control		2mA: [000]	10mA: [100]	
								4mA: [001]	12mA: [101]	
								6mA: [010]	14mA: [110]	
0	Output	0.75V	Output	ianal	of DV	racaivar		8mA: [011]	16mA: [111]	
0	Output	0.750				Kreceiver buffer. High asser	tod data pathi			
					-	-				
IES	Input	0.75V		from IO to O. IES = 0, O = 0 For VIO turn-off applications, IES = 0 prevents						
					-	ower domain.				
						buffer Schmitt tri				
SMT	Input	0.75V	control.		-		Register program	mmable		
			SMT= 1,	Schn	nitt tri	igger enabled				
PUPD	Input	0.75V						Register programmable		
RO	Input	0.75V	PUPD	R1	RO	R value		Register programmable		
			0	0	0	High Z				
			0	0	1	PU-75K				
			0	1	0	PU-200K	-			
			0	1	1	PU-75K/200K	-			
R1	Input	0.75V	1	0	0	High Z	-	Register program	nmable	
			1	0	1	PD-75K	-			
			1	1	0	PD-200K				
				1	1	PD-75K/200K				
			75K/200	K me	ans p	arallel connection				
			RX duty	selec	tion					
			• RDS	EL[0]	: Leve	el shifter duty high	fter duty high when asserted Register programmable			
RDSEL[1:0]	Input	0.75V	(hig	h pul	se wio	dth adjustment)		Default setting: 1.8V:		
			• RDS	EL[1]	: Leve	el shifter duty low	when asserted	RDSEL[1:0]=[00]		
					e wid	th adjustment)				

Table 3-177 KP 200K I/O Cell

© 2023-2024 MediaTek Inc. All rights reserved.

Pin Description	Туре	Level	Description	Note
TDSEL[3:0]	Input	0.75V		Register programmable Default setting: 1.8V: TDSEL[3:0]=[0000] 1.2V: TDSEL[3:0]=[0000] *Please set BIAS control pin, 1.8V: BSEL0=0, BDSEL[1:0]=[00] 1.2V: BSEL0=1, BDSEL[1:0]=[00] *Please set TDSEL[3:0]=[1111] @ if VCCK is lower than 0.4V.

Table 3-178 I3C I/O Cell

Pin Description	Pin Description Type Level		Description	N	lote
1	Input	0.75V	Input signal of driver		
10	Input/ Output	1.8V	Data input/output. Output pin of driver (TX mode)/input pin of receiver (RX mode)		
E	Input	0.75V	To enable output. High asserted. E = 1, TX mode; E = 0, RX mode.		
E2, E4, E8	Input	0.75V	TX driving strength control	Register progra (E8, E4, E2): 2mA: [000] 4mA: [001] 6mA: [010] 8mA: [011]	mmable 2G Type 10mA: [100] 12mA: [101] 14mA: [110] 16mA: [111]
EH	Input	0.75V	To enable the I2C mode.	Register progra	mmable
EH1, EH2	Input	0.75V	TX driving strength control for the I2C mode	Register progra	mmable
0	Output	0.75V	Output signal of the RX		
IES	Input	0.75V	To enable RX input buffer. High asserted data path: from IO to O. IES = 0, O = 0 For VIO turn-off applications, IES = 0 prevents leakage in VDDIO power domain.		
SMT	Input	0.75V	To enable RX input buffer Schmitt trigger hysteresis control. High asserted. SMT= 1, Schmitt trigger enabled	Register progra	mmable
PU	Input	0.75V	75K pull-up resistor control. High activation	Register progra	mmable
PD	Input	0.75V	75K pull-down resistor control. High activation	Register progra	mmable
RSEL	Input	0.75V	Pull-up/down resistance selection.RSEL=0, R=75K (GPIO mode)		

Pin Description	Туре	Level	Description	Note
			 RSEL=1, RSEL1=0, R=5K (SoundWire IO mode) 	
RSEL1	Input	0.75V	Additional strong pull resistor control for the I2C pull-up resistor	
RSEL2	Input	0.75V	Additional strong pull resistor control for the I2C pull-up resistor.	
RDSEL[1:0]	Input	0.75V	 RX duty selection RDSEL[0]: Level shifter duty high when asserted (high pulse width adjustment) RDSEL[1]: Level shifter duty low when asserted (low pulse width adjustment) 	RDSEL[1:0] = [00] Other settings are not allowed.
TDSEL[3:0]	Input	0.75V	 TX duty selection TDSEL[2][0]: Output level shifter duty high when asserted (high pulse width adjustment) TDSEL[3][1]: Output level shifter duty low when asserted (low pulse width adjustment) 	TDSEL[3:0] = [0000] Other settings are not allowed.

Table 3-179 RST I/O Cell

Pin Description	Туре	Level	Description	Note
I	Input	0.75V	Input signal of driver	
0	Output	0.75V	Output signal of the RX	
			To enable RX input buffer. High asserted data	
IES	Input	0.75V	path: from IO to O. IES = 0, $O = 0$	
125	input	0.750	For VIO turn-off applications, IES = 0 prevents	
			leakage in VDDIO power domain.	
			O18_ANALOG_DOUNT_TOUCH control	
IES18	Input	0.75V	• IES18 = 1, O18_ANALOG_DOUNT_TOUCH = IO	Register programmable
			• IES18 = 0, O18_ANALOG_DOUNT_TOUCH = 0	
			To enable RX input buffer Schmitt trigger	
SMT	Input	0.75V	hysteresis control. High asserted.	Register programmable
			SMT= 1, Schmitt trigger enabled	
PU	Input	0.75V	75K pull-up resistor control. High activation	Register programmable
PD	Input	0.75V	75K pull-down resistor control. High activation	Register programmable
			RX duty selection	
			• RDSEL[0]: Level shifter duty high when	RDSEL[1:0] = [00]
RDSEL[1:0]	Input	0.75V	asserted (high pulse width adjustment)	Other settings are not
			• RDSEL[1]: Level shifter duty low when	allowed.
			asserted (low pulse width adjustment)	

Table 3-180 MSDC3A18 I/O Cell

Pin Description	Туре	Level		Description				Note		
I	Input	0.75V	Input sigr	nal of	drive	r				
Ю	Input/ Output	1.8V	Output p	Data input/output. Output pin of driver (TX mode)/input pin of receiver (RX mode)						
E	Input	0.75V		-		igh asserted.				
E2, E4, E8	Input	0.75V					Register program (E8, E4, E2): 2mA: [000] 4mA: [001] 6mA: [010] 8mA: [011]	mmable 2G Type 10mA: [100] 12mA: [101] 14mA: [110] 16mA: [111]		
0	Output	0.75V	Output si	gnal	of RX	receiver				
IES	Input	0.75V	data path For VIO t	To enable RX input buffer. High asserted data path: from IO to O. IES = 0, O = 0 For VIO turn-off applications, IES = 0 prevents leakage in VDDIO power domain.						
SMT	Input	0.75V	hysteresi	To enable RX input buffer Schmitt trigger hysteresis control. High asserted. SMT= 1, Schmitt trigger enabled			gger	Register program	mmable	
RO	Input	0.75V						Register program	mmable	
R1	Input	0.75V	PU/PD 0	R1 0	R0 0	R value High Z		Register prograu Register prograu		
			0	0	1	PU-10K	_			
			0	1	0	PU-50K	_			
			0	1	1	PU-10K/50K	-			
			1	0	0	High Z				
PUPD	Input	0.75V	1	0	1	PD-10K		Register progra	nmable	
			1	1	0	PD-50K				
			1 10K/50K resistanc		1 Is para	PD-10K/50K allel connection o	f			
RDSEL[5:0]	Input	0.75V	RX duty s	elect				Register prograu Default setting:	mmable	

© 2023-2024 MediaTek Inc. All rights reserved.

Pin Description	Туре	Level	Description	Note
			• RDSEL[1:0]: Input buffer duty high when	RDSEL[5:0]=000000
			asserted (high pulse width adjustment)	
			• RDSEL[3:2]: Input buffer duty low when	
			asserted(low pulse width adjustment)	
			• RDSEL[5:4]: Level shifter duty high when	
			asserted (high pulse width adjustment)	
			TX duty select	
			• TDSEL[1:0]: Output level shifter duty	Register programmable
			high when asserted (high pulse width	Default setting:
TDSEL[3:0]	Input	0.75V	adjustment)	TDSEL[3:0]=0000
			• TDSEL[3:2]: Output level shifter duty low	TDSEL[3:0]=1111 if operating in low
			when asserted(low pulse width	speed mode(VCCK= 0.45v +-10%)
			adjustment)	

Table 3-181 MSDC3A18OD33 I/O Cell

Pin Description	Туре	Level	Description	Note
VCC3IO	Power	3V	3V Power Port. For IO output buffer	
VCC18I	Power	1.8V	1.8V Power Port. For IO pre-driver and RX path	
VCCK	Power	0.75V	0.75V Power Port. For IO control logic	
GND3IO	Ground	0V	Ground Port	
GNDK	Ground	0V	Ground Port	
I	Input	0.75V	Input Signal of Driver	
10	Input/ Output	1.8V/3.0V	Data Input/Output. Output pin of Driver (TX mode)/Input Pin of Receiver (RX mode)	
E	Input	0.75V	Output Enable. High asserted. E=1, TX mode. E=0, RX mode.	
SR	Input	0.75V	Output Slew Rate Control. High asserted. SR=1, slower slew. SR=0, no slew rate controlled.	
E2, E4, E8	Input	0.75V	TX driving strength control	Register programmable 2G Type (E8, E4, E2): 2mA: [000] 10mA: [100] 4mA: [001] 12mA: [101] 6mA: [010] 14mA: [110] 8mA: [011] 16mA: [111]
0	Output	0.75V	Output Signal of RX receiver	
IES	Input	0.75V	RX input buffer enable. High asserted. Datapath: from IO to O. IES=0, O=0	Power down mode: IES=0 is a must Quiescent mode: IES=0 is suggested

Pin Description	Туре	Level	Description					Note
SMT	Input	0.75V	-	RX input buffer Schmitt trigger hysteresis control enable. High asserted. SMT=1, Schmitt trigger enable				
PUPD/R0/R1	Input	0.75V	table below		-	PD. See the attached to R Value of 1.8V/3.3V IO Power High-Z PU10Kohm PU50Kohm PU10Kohm/50Kohm High-Z PD10Kohm PD50Kohm PD 10Kohm/50Kohm High-Z	ruth	Register programmable
TDSEL[3:0]	Input	0.75V	 TDSEL0, TDSEL2: Output level shifter duty high when asserted (high pulse width adjustment) TDSEL1, TDSEL3: Output level shifter duty low when asserted (low pulse width adjustment) 					Register programmable
RDSEL[5:0]	Input	0.75V	 RDSEL0, RDSEL1, RDSEL4: input level shifter duty high when asserted (high pulse width adjustment) TDSEL2, TDSEL3, RDSEL5: input level shifter duty low when asserted (low pulse width adjustment) 					Register programmable

Table 3-182 AGPIO General 1.8V I/O Cell

Pin Description	Туре	Level	Description	I	Notes
I	Input	0.75V	Input signal of driver		
ю	Input/ Output	1.8V	Data input/output. Output pin of driver (TX mode)/input pin of receiver (RX mode)		
E	Input	0.75V	To enable output. High asserted.		
			E = 1, TX mode; E = 0, RX mode.		
	Input	0.75V	TX driving strength control	Register progr	ammable 2G Type
				(E8, E4, E2):	
				2mA: [000]	10mA: [100]
E2, E4, E8				4mA: [001]	12mA: [101]
				6mA: [010]	14mA: [110]
				8mA: [011]	16mA: [111]
0	Output	0.75V	Output signal of RX receiver		
			To enable RX input buffer. High asserted data		
150	Input	0.75V	path: from IO to O. IES = $0, O = 0$		
IES			For VIO turn-off applications, IES = 0 prevents		
			leakage in VDDIO power domain.		

© 2023-2024 MediaTek Inc. All rights reserved.

Page 352 of 472

Pin Description	Туре	Level	Description	Notes
SMT	Input	0.75V	To enable RX input buffer Schmitt trigger hysteresis control. High asserted.	Register programmable
			SMT= 1, Schmitt trigger enabled	
PU	Input	0.75V	75K pull-up resistor control. High activation	Register programmable
PD	Input	0.75V	75K pull-down resistor control. High activation	Register programmable
RDSEL[1:0]	Input	0.75V	 RX duty selection RDSEL[0]: Level shifter duty high when asserted (high pulse width adjustment) RDSEL[1]: Level shifter duty low when asserted (low pulse width adjustment) 	Register programmable Default setting: 1.8V: RDSEL[1:0]=[00]
TDSEL[3:0]	Input	0.75V	 TX duty selection TDSEL[2][0]: Output level shifter duty high when asserted (high pulse width adjustment) TDSEL[3][1]: Output level shifter duty low when asserted (low pulse width adjustment) 	Register programmable Default setting: 1.8V: TDSEL[3:0]=[0000] 1.2V: TDSEL[3:0]=[0000] *Please set BIAS control pin, 1.8V: BSEL0=0, BDSEL[1:0]=[00] 1.2V: BSEL0=1, BDSEL[1:0]=[00] *Please set TDSEL[3:0]=[1111] @ if VCCK is lower than 0.4V.
AIO_ANALOG_ DONT_TOUCH	Input/Output	1.8V	Analog IO. Will be connected to analog circuit	
G	Input	0.75V	 Analog/digital IO function selection port G=0 => analog IO mode G=1 => digital IO mode 	When G=0, analog IO mode When G=1, digital IO mode

3.12.8.3 Signal Multiplexing

Each GPIO pin of the MT8370 may have up to 8 auxiliary functions (Aux Func.0 to Aux Func.7) that can be either output or input. The following sections explain the output and input signal multiplexing cases.

- Setting the GPIO_DIR register to 1 configures the GPIO as the **output** mode.
- Setting the GPIO_DIR register to **0** configures the GPIO as the **input** mode.

3.12.8.3.1 Output Signal Multiplexing

- When the *GPIO_MODE* register is set to be 0, the GPIO function (i.e., Aux Func.0) is selected. Additional registers, such as *GPIO_DOUT*, are also programmable to control the output state (e.g., output low or output high).
- When the *GPIO_MODE* register is set to any other values, the corresponding pin-mux function, for example, Aux Func.1 or Aux Func.2, is selected.

3.12.8.3.2 Input Signal Multiplexing

- When the *GPIO_MODE* register is set to 0, the GPIO function (i.e., Aux Func.0) is selected. Additional registers such as PU and PD are also programmable for other required usages, such as input high-Z, input pull down, or input pull high. Note that the PU and PD settings for each pin are separated into different control register domains.
- When the *GPIO_MODE* register is set to other values, one of the other pin mux functions such as Aux Func.1 or Aux Func.2, is selected.

3.12.8.4 Bitwise Command Register

To explain the bitwise command registers, take the following registers related to the same GPIO pads input/out direction as an example.

Register	Base Address	Description
GPIO_DIR0	(GPIO Base address+0x0000)[31:0]	Requires a "read-modify-write" operation to set the I/O direction for the corresponding GPIO pads.
GPIO_DIRO_SET	(GPIO Base address+0x0004)[31:0]	Bitwise functionsBits written with "1" in <i>GPIO_DIRO_SET</i> set the corresponding
GPIO_DIRO_CLR	(GPIO Base address+0x0008)[31:0]	 GPIO pads as output pins. Bits written with "1" in <i>GPIO_DIRO_CLR</i> set the corresponding GPIO pads as input pins. Bits written with "0" have no effect, i.e., no read-modify-write operation is needed for the bitwise registers.
GPIO_DOUT GPIO_DOUT_SET GPIO_DOUT_CLR	-	Set the output value of 0/1 if the corresponding pads are configured as output pins.

See below for the example of writing the output value through the following registers.

Register	Base Address	Description				
GPIO_DOUT0	(GPIO Base address+0x0100)[31:0]	Requires a "read-modify-write" operation to set the output value for the corresponding GPIO pads.				
GPIO_DOUT0_SET	(GPIO Base address+0x0104)[31:0]	Bitwise functionsWriting "1" to the bits in <i>GPIO_DOUTO_SET</i> sets the				
GPIO_DOUT0_CLR	(GPIO Base address+0x0108)[31:0]	 corresponding GPIO pads output value to 1. Writing "1" to bits in <i>GPIO_DOUTO_CLR</i> sets the corresponding GPIO pads output value to 0. Bits written with "0" have no effect, i.e., no read-modify-write operation is needed for the bitwise registers. 				

3.12.8.5 Block Diagram

Figure 3-224 GPIO Block Diagram

3.12.8.6 GPIO Signal Descriptions

Table 3-183 presents GPIO signal descriptions.

Table 3-183 GPIO Signal Descriptions

Signal Name	Туре	Description	Ball Location
GPIO0	DIO	General-purpose input and output	Y10
GPIO1	DIO	General-purpose input and output	U10
GPIO2	DIO	General-purpose input and output	Y6
GPIO3	DIO	General-purpose input and output	Y7
GPIO4	DIO	General-purpose input and output	Y8
GPIO5	DIO	General-purpose input and output	W7
GPIO6	DIO	General-purpose input and output	W3
GPIO7	DIO	General-purpose input and output	W4
GPIO8	DIO	General-purpose input and output	W5
GPIO9	DIO	General-purpose input and output	V4
GPIO10	DIO	General-purpose input and output	V5
GPIO11	DIO	General-purpose input and output	W8
GPIO12	DIO	General-purpose input and output	R31
GPIO13	DIO	General-purpose input and output	Т30
GPIO14	DIO	General-purpose input and output	T31
GPIO15	DIO	General-purpose input and output	U32
GPIO16	DIO	General-purpose input and output	AB32
GPIO17	DIO	General-purpose input and output	AA35
GPIO18	DIO	General-purpose input and output	G4
GPIO19	DIO	General-purpose input and output	G3
GPIO20	DIO	General-purpose input and output	E3

© 2023-2024 MediaTek Inc. All rights reserved.

Signal Name	Туре	Description	Ball Location
GPIO21	DIO	General-purpose input and output	G5
GPIO22	DIO	General-purpose input and output	E4
GPIO23	DIO	General-purpose input and output	E5
GPIO24	DIO	General-purpose input and output	F4
GPIO25	DIO	General-purpose input and output	Y9
GPIO26	DIO	General-purpose input and output	AA7
GPIO27	DIO	General-purpose input and output	AA11
GPIO28	DIO	General-purpose input and output	Y5
GPIO29	DIO	General-purpose input and output	AA9
GPIO30	DIO	General-purpose input and output	Y11
GPIO31	DIO	General-purpose input and output	U2
GPIO32	DIO	General-purpose input and output	U3
GPIO33	DIO	General-purpose input and output	V1
GPIO34	DIO	General-purpose input and output	V2
GPIO35	DIO	General-purpose input and output	U4
GPIO36	DIO	General-purpose input and output	U5
GPIO37	DIO	General-purpose input and output	T6
GPIO38	DIO	General-purpose input and output	T5
GPIO39	DIO	General-purpose input and output	T4
GPIO40	DIO	General-purpose input and output	T1
GPIO41	DIO	General-purpose input and output	T2
GPIO42	DIO	General-purpose input and output	H31
GPIO43	DIO	General-purpose input and output	J31
GPIO44	DIO	General-purpose input and output	J30
GPIO45	DIO	General-purpose input and output	K30
GPIO46	DIO	General-purpose input and output	AB33
GPIO47	DIO	General-purpose input and output	AA4
GPIO48	DIO	General-purpose input and output	AA3
GPIO49	DIO	General-purpose input and output	AA1
GPIO50	DIO	General-purpose input and output	AB34
GPIO51	DIO	General-purpose input and output	AC32
GPIO52	DIO	General-purpose input and output	AC33
GPIO53	DIO	General-purpose input and output	AD32
GPIO54	DIO	General-purpose input and output	AD33
GPIO55	DIO	General-purpose input and output	Y4
GPIO56	DIO	General-purpose input and output	W6
GPIO57	DIO	General-purpose input and output	M36
GPIO58	DIO	General-purpose input and output	L36

Signal Name	Туре	Description	Ball Location
GPIO59	DIO	General-purpose input and output	Y2
GPIO60	DIO	General-purpose input and output	AA2
GPIO61	DIO	General-purpose input and output	W2
GPIO62	DIO	General-purpose input and output	W1
GPIO63	DIO	General-purpose input and output	K36
GPIO64	DIO	General-purpose input and output	K37
GPIO65	DIO	General-purpose input and output	F5
GPIO66	DIO	General-purpose input and output	F6
GPIO67	DIO	General-purpose input and output	H7
GPIO68	DIO	General-purpose input and output	G6
GPIO69	DIO	General-purpose input and output	V6
GPIO70	DIO	General-purpose input and output	T11
GPIO71	DIO	General-purpose input and output	٧7
GPIO72	DIO	General-purpose input and output	V8
GPIO73	DIO	General-purpose input and output	U7
GPIO74	DIO	General-purpose input and output	U8
GPIO75	DIO	General-purpose input and output	Т9
GPIO76	DIO	General-purpose input and output	T10
GPIO77	DIO	General-purpose input and output	Т8
GPIO78	DIO	General-purpose input and output	Т7
GPIO79	DIO	General-purpose input and output	G2
GPIO80	DIO	General-purpose input and output	G1
GPIO81	DIO	General-purpose input and output	F2
GPIO82	DIO	General-purpose input and output	E2
GPIO83	DIO	General-purpose input and output	R36
GPIO84	DIO	General-purpose input and output	P36
GPIO85	DIO	General-purpose input and output	P34
GPIO86	DIO	General-purpose input and output	R34
GPIO87	DIO	General-purpose input and output	R33
GPIO88	DIO	General-purpose input and output	Т33
GPIO89	DIO	General-purpose input and output	P31
GPIO90	DIO	General-purpose input and output	P32
GPIO91	DIO	General-purpose input and output	R30
GPIO92	DIO	General-purpose input and output	К32
GPIO93	DIO	General-purpose input and output	K31
GPIO94	DIO	General-purpose input and output	L30
GPIO95	DIO	General-purpose input and output	L31
GPIO96	DIO	General-purpose input and output	L33

Signal Name	Туре	Description	Ball Location
GPIO97	DIO	General-purpose input and output	L34
GPIO98	DIO	General-purpose input and output	M31
GPIO99	DIO	General-purpose input and output	N37
GPIO100	DIO	General-purpose input and output	К34
GPIO101	DIO	General-purpose input and output	M33
GPIO102	DIO	General-purpose input and output	M35
GPIO103	DIO	General-purpose input and output	M34
GPIO104	DIO	General-purpose input and output	N33
GPIO105	DIO	General-purpose input and output	M30
GPIO106	DIO	General-purpose input and output	M32
GPIO107	DIO	General-purpose input and output	G36
GPIO108	DIO	General-purpose input and output	H36
GPIO109	DIO	General-purpose input and output	J36
GPIO110	DIO	General-purpose input and output	J37
GPIO111	DIO	General-purpose input and output	G33
GPIO112	DIO	General-purpose input and output	G32
GPIO113	DIO	General-purpose input and output	H35
GPIO114	DIO	General-purpose input and output	H34
GPIO115	DIO	General-purpose input and output	H33
GPIO116	DIO	General-purpose input and output	J34
GPIO117	DIO	General-purpose input and output	J33
GPIO118	DIO	General-purpose input and output	G31
GPIO119	DIO	General-purpose input and output	G30
GPIO120	DIO	General-purpose input and output	H32
GPIO121	DIO	General-purpose input and output	AD30
GPIO122	DIO	General-purpose input and output	AC31
GPIO123	DIO	General-purpose input and output	AC30
GPIO124	DIO	General-purpose input and output	AB31
GPIO125	DIO	General-purpose input and output	N30
GPIO126	DIO	General-purpose input and output	N31
GPIO127	DIO	General-purpose input and output	P30
GPIO128	DIO	General-purpose input and output	N34
GPIO129	DIO	General-purpose input and output	P33
GPIO130	DIO	General-purpose input and output	P35
GPIO131	DIO	General-purpose input and output	AB9
GPIO132	DIO	General-purpose input and output	AC9
GPIO133	DIO	General-purpose input and output	AB8
GPIO134	DIO	General-purpose input and output	AC4

Signal Name	Туре	Description	Ball Location
GPIO135	DIO	General-purpose input and output	AB3
GPIO136	DIO	General-purpose input and output	AA8
GPIO137	DIO	General-purpose input and output	AC8
GPIO138	DIO	General-purpose input and output	AB7
GPIO139	DIO	General-purpose input and output	AB6
GPIO140	DIO	General-purpose input and output	AB5
GPIO141	DIO	General-purpose input and output	AC5
GPIO142	DIO	General-purpose input and output	AA5
GPIO143	DIO	General-purpose input and output	AA6
GPIO144	DIO	General-purpose input and output	AC6
GPIO145	DIO	General-purpose input and output	AC7
GPIO146	DIO	General-purpose input and output	AB4
GPIO147	DIO	General-purpose input and output	AD11
GPIO148	DIO	General-purpose input and output	AD10
GPIO149	DIO	General-purpose input and output	AB2
GPIO150	DIO	General-purpose input and output	AB1
GPIO151	DIO	General-purpose input and output	D37
GPIO152	DIO	General-purpose input and output	E36
GPIO153	DIO	General-purpose input and output	F37
GPIO154	DIO	General-purpose input and output	D35
GPIO155	DIO	General-purpose input and output	E34
GPIO156	DIO	General-purpose input and output	F33
GPIO157	DIO	General-purpose input and output	F32
GPIO158	DIO	General-purpose input and output	E32
GPIO159	DIO	General-purpose input and output	D36
GPIO160	DIO	General-purpose input and output	F36
GPIO161	DIO	General-purpose input and output	D33
GPIO162	DIO	General-purpose input and output	E35
GPIO163	DIO	General-purpose input and output	D3
GPIO164	DIO	General-purpose input and output	D4
GPIO165	DIO	General-purpose input and output	D2
GPIO166	DIO	General-purpose input and output	D1
GPIO167	DIO	General-purpose input and output	C4
GPIO168	DIO	General-purpose input and output	C3
GPIO169	DIO	General-purpose input and output	AC35
GPIO170	DIO	General-purpose input and output	AD35
GPIO171	DIO	General-purpose input and output	AD37
GPIO172	DIO	General-purpose input and output	AD36

Signal Name	Туре	Description	Ball Location
GPIO173	DIO	General-purpose input and output	AB37
GPIO174	DIO	General-purpose input and output	AB35
GPIO175	DIO	General-purpose input and output	К33
GPIO176	DIO	General-purpose input and output	K35

3.12.8.7 Function Description

The I/O pins of the MT8370 can be programmed for multiple purposes, such as GPIO, NAND and SPI, by setting the GPIO_MODE register for different functions. Note that all functions must comply with the priority rule.

- When there are more than one I/O set as the same **output** function, all of the selected I/Os are able to output specific signals.
- When there are more than one I/O set as the same **input** (or bi-directional) function, only the I/O with the largest GPIO index works functionally.

3.12.8.7.1 Main Functions

Table 3-184 Main Functions of GPIOs

Main Function	Description	Notes
GPIO_MODE	GPIO mode selection.	• 000 as GPIO mode
		• 001 to 111 as Aux Func.
	GPIO direction.	• 0 as input
GPIO_DIR		• 1 as output
GPIO_DOUT	GPIO output.	-
GPIO_DIN	GPIO input.	-
PU/PD		• PU = 1, PD = 0 as pull-up
	Pull up/down resistor control. High activation.	• PU = 0, PD = 1 as pull-down
		• PU = 0, PD = 0 as no-pull
	Driving strength of the GPIO, which can be configured up to 16 mA.	• 2 mA: [000]
		• 4 mA: [001]
DRV_STRENGTH		• 6 mA: [010]
		• 8 mA: [011]
		• 10 mA: [100]
		• 12 mA: [101]
		• 14 mA: [110]
		• 16 mA: [111]
INPUT/OUTPUT	I/O to the Aux Func IP.	-
	To latch the GPIO signal during startup.	-
Latch	Used for strapping (for more details, refer to	
	Section 3.12.8.7.2).	
3.12.8.7.2 Strapping Functions

Table 3-185 lists the strapping pins. The strapping pin state is latched when the system "resetb" changes from low to high. The strapping pin state decides which stage mode the system enters, or where the BROM boots from. When the strapping stage is completed, the strapping pin state can be changed.

To exit the strapping mode, configure the register *TPBANK* in the GPIO. Refer to Table 3-186 for more details.

Pin Name	Description	TRAP_FORCE_EN	TRAP_FORCE_VALUE					
[0] PAD_AUD_DAT_MOSI0	trap out in	BitO	Bit7					
[1] PAD_PWRAP_SPI_CSN	trap_out_io	Bit1	Bit8					
[0] PAD_AUD_CLK_MOSI	Boot selection mode	Bit2	Bit9					
[1] PAD_AUD_SYNC_MOSI	Boot selection mode	Bit3	Bit10					
PAD_AUD_DAT_MOSI1	emmc_bit_speed_mode	Bit4	Bit11					
PAD_CMMCLK0	spi_nor_address_mode	Bit5	Bit12					
PAD_SCP_VREQ_VAO	boot_room_boot_partition_sequence	Bit6	Bit13					

Table 3-185 Strapping Configurations

Table 3-186 Strapping Configuration Register

Address and Bit	Name	Description
0x100056F0[6:0]	TRAP_FORCE_EN(JTAG)	To enable the strapping configuration with TRAP_FORCE_VALUE(JTAG) Active high
0x100056F0[13:7]	TRAP_FORCE_VALUE(JTAG)	To force the value to JTAG strapping.

3.12.8.7.3 Secure Function

All GPIO control registers have a secure function.

- Enable the secure function by the *sec_en* register.
- The secure function is disabled by default.
- If the *sec_en* register bit = 1, the GPIO register follows the register map security definition.

3.12.8.8 Theory of Operations

3.12.8.8.1 Select GPIO Mode

To enable certain function on certain pads, change the GPIO mode of the pad. When the *GPIO_MODE* register is set to 0, the GPIO function (i.e., Aux Func.0) is selected. When the *GPIO_MODE* register is set to any other values, the corresponding pin-mux function, for example, Aux Func.1 or Aux Func.2, is selected.

3.12.8.8.2 Configure Pad Output Value and Observe Pad Input

When a certain pad's GPIO mode is configured as 0, you can configure the pad output value and observe the input value. When the pad GPIO mode is not 0, you cannot configure the pad output value by GPIO setting. You can observe the pad input value when the pad holds on stable.

If you want to configure the pad output value, follow the steps below.
 Step 1: Set GPIO_MODE as 0
 Step 2: Set GPIO_DIR as 1
 Step 3: Setting GPIO_DOUT as 1 means output high, while setting GPIO_DOUT as 0 means output low
 If you want to observe the pad input value, follow the steps below.
 Step 1: Set GPIO_MODE as 0
 Step 2: Set GPIO_DIR as 1
 Step 3: Setting GPIO_DIR as 0
 Step 3: Setting GPIO DIN as 1 means input high, while setting GPIO DIN as 0 means input low

3.12.8.8.3 Configure Pins of Pads

The pins of pads can be configured when needed, but the default value should be sufficient for most scenarios.

3.12.8.9 Programming Guide

3.12.8.9.1 GPIO Mode as Input

Table 3-187 GPIO Mode Input Programming Outline

Step	Sequence	Register Name	Register Value	Address
1	Set the AUX function to GPIO Mode0.	GPIO_MODE	0	GPIO Base + GPIO_MODE
2	Set the GPIO DIR register to be configured as the input.	GPIO_DIR	0	GPIO Base + GPIO_DIR

3.12.8.9.2 GPIO Mode as Output

Table 3-188 GPIO Mode Output Programming Outline

Step	Sequence	Register Name Register Value		Address	
1	Set the AUX function to GPIO Mode0.	GPIO_MODE	0	GPIO Base + GPIO_MODE	
2	Set the GPIO DIR register to be configured as the output.	GPIO_DIR	1	GPIO Base + GPIO_DIR	
3	Set GPIO DOUT value	GPIO_DOUT	Set 1 as output highSet 0 as output low	GPIO Base + GPIO_DOUT	

3.12.8.10 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.12.8.11 Electrical Characteristics

Parameter	Description	Min	Тур	Мах	Unit
VCC180	Supply voltage of IO power	1.62	1.8	1.98	V
Freq ⁽¹⁾	Maximum operating frequency	-	-	55	MHz
VCCK	Supply voltage of core power	0.495	0.75	0.825	V
Input					
VIH	High-level input voltage	0.65 * VCC180	-	VCC180 + 0.3	V
VIL	Low-level input voltage	-0.3	-	0.35 * VCC180	V
R _{pu}	Input pull-up resistance	40	75	190	KΩ
R _{pd}	Input pull-down resistance	40	75	190	ΚΩ
Output	•				
V _{OH (DC)}	High-level output voltage	0.75 * VCC180	-		V
V _{OL (DC)}	Low-level output voltage	-	-	0.25*VCC180	V
Leakage	•				
I	Input leakage current	-10		10	
lin	(Any input 0V < VIN < VCC18O)	-10	-	10	μA
IVCC18Oz	VCC18O standby leakage @ I/O hi-z and RX off	-10	-	10	μA
IVCCKz	VCCK standby leakage @ I/O hi-z and RX off	-10	-	10	μA

I3C mode maximum operating frequency = 3.4 MHz
 MSDC I/O maximum operating frequency = 208 MHz
 SPMI I/O maximum operating frequency = 120 MHz

3.12.9 Pulse Width Modulation (PWM)

3.12.9.1 **Overview**

The Pulse Width Modulation (PWM) is a technique designed to generate pulse sequences with programmable frequency and duration for various applications, including but not limited to Liquid-Crystal Display (LCD) backlight and charging. Prior to enabling the PWM, the pulse sequences must be prepared in the registers. The PWM then reads the stored pulse sequences to generate the expected waveform to meet specific requirements of the given applications.

3.12.9.2 Features

Different PWM modes as listed below are available.

Mode	Description
Normal Mode	Generates pulse sequences with programmable frequency and duration.
FIFO Mode	Generates pulse sequences for the data that is programmable by the CPU.
Memory Mode and Random Mode	Generate pulse sequence for the data sent from SRAM.

Table 3-190 Pulse Width Modulation (PWM) Modes

3.12.9.3 Block Diagram

Figure 3-225 Block Diagram of PWM

Figure 3-225 illustrates the PWM block diagram, which consists of several functional components:

- **Control and status registers**: Receive commands from the system.
- **DMA control and arbitrator**: Facilitates communication between the system RAM and the PWM when the normal PWM is set to the memory mode or random mode.
- **DATA_ACCESS**: Manages the data flow from the AHB/APB.
- **PWM_GENERATION**: Controls the transmission of the PWM waveform.

3.12.9.4 Function Description

3.12.9.4.1 Waveform Generation

The PWM outputs waveforms through the PAD pins. The theoretical methodology for generating PWM waveforms differs across modes, as outlined in Section 3.12.9.5. The PWM generates waveforms by dividing frequencies and data sequences in a specific manner as described in the following sections.

3.12.9.4.1.1 Frequency Division Generation

The PWM generates a waveform by dividing the frequency in the normal mode.

Figure 3-226 Frequency Division Generation

3.12.9.4.1.2 Data Sequence Generation

The PWM module generates a waveform by data sequence generation in the PWM FIFO, memory and random modes.

Figure 3-227 Data Sequence Generation

3.12.9.5 Theory of Operations

For the programming guide of each mode, refer to Section 3.12.9.7.

Figure 3-228 PWM Normal Mode

Figure 3-228 shows the PWM waveform in the normal mode.

The frequency is determined by PWM_DATA_WIDTH (PWM Base address+0x00AC) [12:0] and the duty cycle is determined by PWM THRESH (PWM Base address+0x00B0) [12:0].

$$PWM Frequency = \frac{CLKSRC}{CLKDIV * (DATA_WIDTH + 1)}$$

Without consideration of GUARD_DURATION (PWM Base address+0x8C) [15:0], the duty cycle is:

 $Duty cycle = \frac{PWM_THRESH + 1}{DATA_WIDTH + 1}$

Guard_ duration (PWM Base address+0x08C) [15:0] is the time interval between two complete waveforms. When PWM_WAVE_NUM (PWM Base address+0x00A8) [15:0] = 0, it means that hardware is continuously outputting the waveform, and the waveform can only be terminated by disabling PWM.

Note that CLKSRC is the frequency of the source clock.

3.12.9.5.2 FIFO Mode

Figure 3-229 FIFO Mode

If the pulse sequence data is less than or equal to 64-bit, the data can be directly set in PWM_SEND_DATA0 (PWM Base address+0x00A0) [31:0], PWM_SEND_DATA1 (PWM Base address+0x00A4) [31:0] and SRCSEL (PWM Base address+0x0000) [5] =0 to reduce memory bandwidth, where SRCSEL is set to 0 to indicate that PWM is in FIFO mode. STOP_BITPOS (PWM Base address+0x0000) [14:9] is used to indicate the stop bit position in the total 64-bit data.

For example, if STOP_BITPOS (PWM Base address+0x0000) [14:9] is 31, only PWM_SEND_DATA0 (PWM Base address+0x00A0) [31:0] is generated. And if STOP_BITPOS (PWM Base address+0x0000) [14:9] is 63, PWM_SEND_DATA0 (PWM Base address+0x00A0) [31:0] and PWM_SEND_DATA1 (PWM Base address+0x00A4) are generated.

3.12.9.5.3 Memory Mode

In the periodical mode, all pulse sequences are repeatedly generated by the number of PWM_WAVE_NUM (PWM Base address+0x00A8) [15:0]. If PWM_WAVE_NUM (PWM Base address+0x00A8) [15:0] =0, the hardware continuously outputs waveforms, and the waveform generation can be stopped by PWM_ENABLE (PWM global Base address+0x0000) [31:0].

SRCSEL (PWM Base address+0x0000) [5] =1 means the memory mode. The pulse sequence data is put in memory with address set by PWM_BUF0_BASE_ADDR (PWM Base address+0x0090) [31:0] and PWM_BUF0_BASE_ADDR2 (PWM Base address+0x009C) [3:0]. The length is PWM_BUF0_SIZE (PWM Base address+0x0094) [15:0]. STOP_BITPOS (PWM Base address+0x0000) [14:9] indicates the stop bit position in the last 32-bit data.

Figure 3-231 Memory Mode and Stop-bit Position

Note:

It can be any kind of memory (usually SYSRAM) so long as the software can read or write the address. The software requests to locate an unused memory and get the address, so it is necessary to write the address and length at PWM_BUF0_BASE_ADDR and PWM_BUF0_SIZE.

3.12.9.5.4 Random Mode

On the other hand, the pulse sequence is stored in dual memory buffers in random mode. Figure 3-232 shows the format of pulse sequences stored in the memory.

The valid bit indicates that the data is ready in the respective memory buffer. The PWM generation clears this bit after all data in that buffer is fetched. The memory buffers are set by the address PWM_BUF0_BASE_ADDR (PWM Base address+0x0090) [31:0] and PWM_BUF0_SIZE (PWM Base address+0x0094) [15:0] for memory 0, and PWM_BUF1_BASE_ADDR (PWM Base address +0x0098) [31:0] and PWM_BUF1_SIZE (PWM Base address+0x009C) [15:0] for memory 1.

The program should prepare for the pulse sequence and set the valid bit to 1 in time before all data in other memory buffers is fetched. Otherwise, the hardware issues an UNDERFLOW interrupt to inform that the pulse generation stops because there is no valid data. If an UNDERFLOW interrupt is received, the software needs to disable PWM, set the valid bit again, and enable PWM to restart pulse generation.

Figure 3-232 PWM Random Mode

Note:

Any kind of memory can be used by PWM (usually SYSRAM) so long as the software can read or write the address. The software issues a request, and PWM can locate an unused memory and get the address. So, you need to assign the address and length at PWM_BUF0_BASE_ADDR, PWM_BUF0_SIZE, PWM_BUF1_BASE_ADDR, and PWM_BUF1_SIZE.

3.12.9.6 PWM Signal Descriptions

Table 3-191 presents PWM signal descriptions.

Table 3-191 PWM Signal Descriptions

Signal Name	Туре	Description	Ball Location
PWM_0	DO	PWM output 0	V4, AB33, AC8, C4
PWM_1	DO	PWM output 1	V5, Y11, AA5, C3
PWM_2	DO	PWM output 2	E5, AA11, R34, AB5
PWM_3	DO	PWM output 3	F4, Y5, R33, AC5

3.12.9.7 Programming Guide

3.12.9.7.1 Normal Mode

	PWM Setting Sequence for Old Mode										
Step	Description	R/W	Address	Bit	MACRO	Value	Note				
1	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b0	Disable PWM[N]				
2	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[15]	OLD_PWM_MODE	1'b1					
3	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[8]	GUARD_VALUE	USER_DEFINED					
4	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[7]	IDLE_VALUE	USER_DEFINED					
5	Set PWM_WAVE_NUM	w	PWM_BASE + 0x0A8+ PWM_NUM*0x40	[15:0]	PWM_WAVE_NUM	USER_DEFINED	If WAVE_NUM=0, waveform generation does not stop until it is disabled.				
6	Set PWM_GDURATION	W	PWM_BASE + 0x08C+ PWM_NUM*0x40	[15:0]	PWM_GDURATION	USER_DEFINED					
7	Set PWM_DATA_WIDTH	W	PWM_BASE + 0xAC + PWM_NUM*0x40	[12:0]	PWM_DATA_WIDTH	USER_DEFINED					
8	Set PWM_THRESH	W	PWM_BASE + 0xB0 + PWM_NUM*0x40	[12:0]	PWM_THRESH	USER_DEFINED					
9	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b1	Enable PWM[N]				

Table 3-192 Normal Mode Setting Procedures

3.12.9.7.2 FIFO Mode

Table 3-193 FIFO Mode Setting Procedures										
	PWM Setting Sequence for FIFO Mode									
Step	Description	R/W	Address	Bit	MACRO	Value	Note			
1	Set PWM_ENABLE	w	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b0	Disable PWM[N]			
2	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[15]	OLD_PWM_MODE	1'b0				
3	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[6]	MODE	1'b0				
4	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[5]	SRCSEL	1'b0				
5	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[8]	GUARD_VALUE	USER_DEFINED				
6	Set IDLE_VALUE	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[7]	IDLE_VALUE	USER_DEFINED				
7	Set PWM_WAVE_NUM	w	PWM_BASE + 0x0A8+ PWM_NUM*0x40	[15:0]	PWM_WAVE_NUM	USER_DEFINED	If WAVE_NUM=0, waveform generation does not stop until it is disabled.			
8	Set PWM_GDURATION	w	PWM_BASE + 0x08C+ PWM_NUM*0x40	[15:0]	PWM_GDURATION	USER_DEFINED				
9	Set PWM_HDURATION	w	PWM_BASE + 0x084+ PWM_NUM*0x40	[15:0]	PWM_HDURATION	USER_DEFINED				
10	Set PWM_LDURATION	w	PWM_BASE + 0x088+ PWM_NUM*0x40	[15:0]	PWM_LDURATION	USER_DEFINED				
11	Set PWM_SEND_DATA0	w	PWM_BASE + 0x0A0+ PWM_NUM*0x40	[31:0]	PWM_SEND_DATA0	USER_DEFINED	This value should be written only in periodical FIFO mode. In other modes, this buffer is for an internal memory access.			
12	Set PWM_SEND_DATA1	w	PWM_BASE + 0x0A4+ PWM_NUM*0x40	[31:0]	PWM_SEND_DATA1	USER_DEFINED	This value should be written only in periodical FIFO mode. In other modes, this buffer is for			

Table 3-193 FIFO Mode Setting Procedures

© 2023-2024 MediaTek Inc. All rights reserved.

	PWM Setting Sequence for FIFO Mode								
Step	Description	R/W	Address	Bit	MACRO	Value	Note		
		w	PWM_BASE + 0x080+	[14:9]	STOP_BITPOS	USER_DEFINED	internal memory access. Stop bit position for source data in periodical mode. In FIFO mode, it is used to indicate the stop		
15	13 Set PWM_CON	v	PWM_NUM*0x40				bit position in a total of 64 bits. In memory mode, it is for the stop bit position of the last 32 bits.		
14	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b1	Enable PWM[N]		

3.12.9.7.3 Memory Mode

Table 3-194 Memory Mode Setting Procedures

	PWM Setting Sequence for Memory Mode									
Step	Description	R/W	Address	Bit	MACRO	Value	Note			
1	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b0	Disable PWM[N]			
2	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[15]	OLD_PWM_MODE	1'b0				
3	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[6]	MODE	1'b0				
4	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[5]	SRCSEL	1'b1				
5	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[8]	GUARD_VALUE	USER_DEFINED				
6	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[7]	IDLE_VALUE	USER_DEFINED				
7	Set PWM_WAVE_NUM	W	PWM_BASE + 0x0A8+ PWM_NUM*0x40	[15:0]	PWM_WAVE_NUM	USER_DEFINED	If WAVE_NUM=0, waveform generation does not stop until it is disabled.			

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

			PWM Setting Seq	uence for	Memory Mode		
Step	Description	R/W	Address	Bit	MACRO	Value	Note
8	Set PWM_GDURATION	w	PWM_BASE + 0x08C+ PWM_NUM*0x40	[15:0]	PWM_GDURATION	USER_DEFINED	
9	Set PWM_HDURATION	w	PWM_BASE + 0x084+ PWM_NUM*0x40	[15:0]	PWM_HDURATION	USER_DEFINED	
10	Set PWM_LDURATION	W	PWM_BASE + 0x088+ PWM_NUM*0x40	[15:0]	PWM_LDURATION	USER_DEFINED	
11	Set PWM_BUF0_BASE_ADD R	w	PWM_BASE + 0x090+ PWM_NUM*0x40	[31:0]	PWM_BUF0_BASE_A DDR	USER_DEFINED	Base address of memory buffer0 for PWM's waveform data
12	Set PWM_BUF0_BASE_ADD R2	w	PWM_BASE + 0x0BC+ PWM_NUM*0x40	[3:0]	PWM_BUF0_BASE_A DDR2	USER_DEFINED	Extend base address of memory buffer0 for PWM's waveform data
13	Set PWM_BUF0_SIZE	w	PWM_BASE + 0x094+ PWM_NUM*0x40	[15:0]	PWM_BUF0_BASE_A DDR_EXTEND	USER_DEFINED	Length of waveform data in memory buffer0 PWM should generate
14	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[14:9]	STOP_BITPOS	USER_DEFINED	Stop bit position for source data in periodical mode. In FIFO mode, it is used to indicate the stop bit position in a total of 64 bits. In memory mode, it is for the stop bit position of the last 32 bits.
15	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b1	Enable PWM[N]

3.12.9.7.4 Random Mode

Table 3-195 Random Mode Setting Procedures

	PWM Setting Sequence for Random Mode									
Step	Description	R/W	Address	Bit	MACRO	Value	Note			
1	Set PWM_ENABLE	W	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b0	Disable PWM[N]			

	PWM Setting Sequence for Random Mode								
Step	Description	R/W	Address	Bit	MACRO	Value	Note		
2	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[15]	OLD_PWM_MODE	1'b0			
3	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[6]	MODE	1'b1			
4	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[5]	SRCSEL	1'b1			
5	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[8]	GUARD_VALUE	USER_DEFINED			
6	Set PWM_CON	W	PWM_BASE + 0x080+ PWM_NUM*0x40	[7]	IDLE_VALUE	USER_DEFINED			
7	Set PWM_GDURATION	w	PWM_BASE + 0x08C+ PWM_NUM*0x40	[15:0]	PWM_GDURATION	USER_DEFINED			
8	Set PWM_HDURATION	W	PWM_BASE + 0x084+ PWM_NUM*0x40	[15:0]	PWM_HDURATION	USER_DEFINED			
9	Set PWM_LDURATION	W	PWM_BASE + 0x088+ PWM_NUM*0x40	[15:0]	PWM_LDURATION	USER_DEFINED			
10	Set PWM_BUF0_BASE_ADD R	w	PWM_BASE + 0x090+ PWM_NUM*0x40	[31:0]	PWM_BUF0_BASE_ADD R	USER_DEFINED	Base address of memory buffer0 for PWM's waveform data		
11	Set PWM_BUF0_SIZE	w	PWM_BASE + 0x094+ PWM_NUM*0x40	[15:0]	PWM_BUF0_BASE_ADD R_EXTEND	USER_DEFINED	Length of waveform data in memory buffer0 PWM should generate		
12	Set PWM_BUF1_BASE_ADD R	w	PWM_BASE + 0x098+ PWM_NUM*0x40	[31:0]	PWM_BUF1_BASE_ADD R	USER_DEFINED	Base address of memory buffer1 for PWM's waveform data		
13	Set PWM_BUF1_SIZE	w	PWM_BASE + 0x09C+ PWM_NUM*0x40	[15:0]	PWM_BUF1_BASE_ADD R_EXTEND	USER_DEFINED	Length of waveform data in memory buffer1 PWM should generate		
14	Set PWM_VALID	W	PWM_BASE + 0x0B8+ PWM_NUM*0x40	[1:0]	BUF1_VALID/ BUF0_VALID	2'b11	Memory1/0 is not empty. When finishing writing data to		

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

			PWM Setting Seq	uence for	Random Mode		
Step	Description	R/W	Address	Bit	MACRO	Value	Note
Step	Description	R/W	Address	Bit	MACRO	Value	Note memory1, write 1 to inform PWM the data in memory1 is ready. Stop bit position for source data in periodical mode. In FIFO mode, it
15	Set PWM_CON	w	PWM_BASE + 0x080+ PWM_NUM*0x40	[14:9]	STOP_BITPOS	USER_DEFINED	is used to indicate the stop bit position in a total of 64 bits. In memory mode, it is for the stop bit position of the last 32 bits.
16	Set PWM_ENABLE	w	PWM_BASE + 0x0000	[N]	PWM_ENABLE	1'b1	Enable PWM[N]

3.12.9.8 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.13 Miscellaneous

3.13.1 Timers and Counters

3.13.1.1 System Timer (SYSTMR)

3.13.1.1.1 Overview

The SYSTMR is a 64-bit and always-on up-counter used as a universal timer in the device. The counter value of SYSTMR is passed to the application cores (A78 and A55), SCP, GPU, and other processors to provide uniform system timestamps for operating systems such as Android[™], Linux[®], and RTOS (Real-Time Operating System).

3.13.1.1.2 Feature

The SYSTMR supports the following key features:

• Enabled by default to tick with a 13 MHz clock period

- Hardware counter incremented compensation when switching to a 32 kHz clock source
- 8 × 32-bit counter timeout value (read as 32-bit down counter)
- Security access permission control for each control register (with one-time lock bit)

3.13.1.1.3 Block Diagram

Figure 3-233 Block Diagram of SYSTMR

3.13.1.1.4 Function Description

• Low power mode

When the system enters low power mode, SYSTMR receives clk_26m_dis from SPM and switches to the 32 kHz clock. SYSTMR can ensure the accuracy of the counter value in low power mode by using the 32 kHz clock counter.

• Halt on debug

If the CPU wants to stop system debugging, the CPU can send the cpu_dbgack signal. SYSTMR stops counting after receiving cpu_dbgack to keep the current counter value.

Timer IRQ

You can set the timer value by writing to the CNTTVAL register. Then, the timer starts counting down. The timer issues an IRQ when it counts down to 0.

3.13.1.1.5 Theory of Operations

SYSTMR is a general counter with the function of counting up and counting down. However, in low power mode, we use a compensation mechanism to ensure that the exact counter value can be maintained between 26m clock and 32k clock. The relationship between 26 MHz and 32 kHz is not an integer, so there is a Quantization Error.

- 1. 26 MHz/32.768 kHz =793.4570313. One cycle of 32.768 kHz takes 793.4570313 cycles of 26 MHz.
- 2. After adding the integer 793, each cycle of 32 kHz causes 0.45703125 cycles of 26 MHz error (about 17.5781 ns).
- 3. One cycle of 32 kHz produces an error of 17.5781 ns; 56.8889M cycles of 32k produces an error of about 1 second -> the time to accumulate a 1-second error is 1736.11 seconds.

It means every 1736.11 seconds pass, there is a 1-second error. In order to eliminate the Quantization Error, conduct the following analysis:

- 1. Use the moving average and find 793.45703125 => 793.45703125 = 793*X + 794*(1-X) => X= 0.54296875.
- 2. To find the best P and Q by Numerical Analysis, use 793*(139/256) + 794*(117/256) = 793.45703125.

Bit Counter	P/Q	X(=P/Q)	Eq. Increment	Error	Day	Year
5	13/24	0.541666667	793.4583333	-5.00801E-11	-7.0529514	-0.02
6	19/35	0.542857143	793.4571429	-4.29258E-12	-82.284433	-0.23
7	19/35	0.542857143	793.4571429	-4.29258E-12	-82.284433	-0.23
8	120/211	0.542986425	793.4570136	-6.79821E-13	519.56742	1.42
9	139/256	0.54296875	793.4570313	0	N/A	N/A

In every 256 32k cycles, add 139 times 793 and 117 times 794 to realize the compensation mechanism.

3.13.1.1.6 Programming Guide

3.13.1.1.6.1 Counter

Although SYSTMR uses a 26 MHz clock source, the counter value is updated at a frequency of 13M. The counter value of SYSTMR is about 76.92 ns per unit. When running at 26 MHz, the counter value increases by 1; when running at 32 kHz, the counter value increases by 396 or 397.

In the CNTCR register, the counter is mainly controlled by the following bits. For a more complete register introduction, refer to "*MT8370 Register Map*."

Register Name	Address	Bit	Name	Туре	Description	
		0	CNT_EN	RW	Enable SYSTMR counter. Default setting is 1.	
		2	CNT 32K AS EN	RW	Enable 32 kHz auto-switch function of SYSTMR counter.	
					Default setting is 1.	
			COMP_15_EN	RW	v1.5 is based on 13 MHz and 32 kHz to tick SYSTMR.	
CNTCR	0x00000	11	COMP_20_EN	RW	v2.0 is only based on 32 kHz to tick SYSTMR.	
					v2.5 solves discontinuity issue of v2.0.	
		12	COMP_25_EN	RW	v2.5 and v2.0 need to be enabled together. v2.0 can be	
					enabled alone.	
		13	KP_LSB9b_EN	RW	The 10 LSB remain 0 when the clock switches to 32 kHz if	
					this bit is set.	

• CNT_32K_AS_EN

This bit decides when 26 MHz is turned off, whether SYSTMR is switched to update the counter at 32 kHz frequency. If this bit is not enabled, the counter pauses when 26 MHz is turned off. In general, this bit should not be disabled.

• COMP_15_EN

In compensation v1.5, SYSTMR only uses one hardware counter to count the counter value. At the 26 MHz clock, the counter adds 1 every cycle; when 26 MHz is turned off, SYSTMR uses the 32 kHz clock, as the discussion of 1.5 Low Power, adding 396 or 397 every cycle.

• COMP_20_EN/COMP_25_EN

In compensation v2.0, SYSTMR uses a 26 MHz counter and a 32 kHz counter to count the counter values, and the two counters count at 26 MHz and 32 kHz clocks, respectively. SYSTMR is mainly based on the 32 kHz counter because the 32 kHz counter is always counting and will not be turned off.

Every time the 32 kHz clock rises, the 26 MHz counter is aligned with the 32 kHz counter, and then the 26 MHz counter value continues to increment at 26 MHz frequency.

In normal mode, SYSTMR outputs a 26 MHz counter value. Turning off the 26 MHz clock means low power mode is enabled. The 26 MHz counter pauses, and SYSTMR switches to output the 32 kHz counter value.

However, this architecture may result in discontinuous SYSTMR values. For systems that are sensitive to continuous count values, the software must enable COMP_25_EN to solve the discontinuity issue.

The following describes the reading and writing of counter values.

Register Name	Register Name Address		Description
CNTCV_L	CNTCV_L 0x00008		64-bit SYSTMR counter value[31:0].
CNTCV_H	CNTCV_H 0x0000C		64-bit SYSTMR counter value[63:32].

Initial counter value

Write 0 to CNTCV_H and CNTCV_L. It takes about 3 32 kHz cycles to synchronize (~100 us).

*If CNT_EN = 0, CNTCV_H/CNTCV_L still changes. Wait for CNT_EN = 1, and then wait for 3 32 kHz cycles to update.

Read counter value

Because the data is from the SYSTMR clock domain to the APB clock domain, it needs to be synchronized. Due to hardware limitations, no matter where the counter value is read from, CNTCV_L needs to be read first to avoid unexpected results.

3.13.1.1.6.2 Timer

The software can control timer and interrupt through the following register.

Register Name	Address	Bit	Name	Туре	Description
		0	CNTTVAL[N]_EN	RW	Enable system timer N.
CNTTVAL[N] CON		1	IRQ[N]_EN	RW	Enable system timer N interrupt.
	0x00040+8*N	4	IRQ[N] STA	RW	Read: system timer N interrupt status.
		4			Write: write 1'b1 to clear interrupt.

The software can set the timer value through the following register.

Register Name	gister Name Address T		Description	
CNTTVAL[N]	0x00044+8*N	RW	System timer N down counter.	
CNTIVAL[N]	000044+8 1		Read: 32-bit down counter value.	

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Register Name	Address	Туре	Description
			Write: set timeout value.

Note: N = 0 to 7

- Set timer value
 - a. Set CNTTVAL[N]*_CON to 0x1: Enable timer[N] to write.
 - b. Write counter down value to CNTTVAL[N].
 - c. Set CNTTVAL[N]_CON to 0x3: Enable IRQ_EN of timer[N] for timeout IRQ.
 - d. Read CNTTVAL[N]: Read current count down value (optional).
 - e. After IRQ is asserted, you need to write CNTTVAL[N]_CON bit 4 to clear IRQ. (CNTTVAL[N]_EN must be 1 to clear the IRQ)
- Timer domain check

Domain check will limit the timer so that only specific domains can access it.

Register Name	Address	Bit	Name	Туре	Description
					Disable domain check for read control registers of
		7:0		RW	timers. Bits 7 to 0 are for timers 7 to 0.
		7.0	RD_DOMAIN_DIS	ΓVV	0: Enable domain check for reading (Default).
DOMAIN DIS	0x00080				1: Disable domain check for reading.
DOMAIN_DIS	0x00080	15:8			Disable domain check for write control registers of
			WR_DOMAIN_DIS	RW	timers. Bits 15 to 8 are for timers 7 to 0.
					0: Enable domain check for writing (Default).
					1: Disable domain check for writing.
Domain val	DOMAIN VAL 0x0084 [3+4*N:4*N] DOMAIN VAL [N]		DOMAIN_VAL_[N]	RW	Domain value of timer N.
	070004	[J+4 N.4 N]		IVV	Domain value is 4 bits.

3.13.1.2 General-Purpose Timer (APXGPT)

3.13.1.2.1 Overview

The Application Processor General-Purpose Timer (APXGPT) module consists of five sets of GPTs that feature 32-bit upcounters and one set of GPTs that contain 64-bit up-counters. Section 3.13.1.2.3 shows the block diagram. Each GPT supports four operation modes as follows. For further details, see Table 3-196 and Section 3.13.1.2.6.

- ONE-SHOT mode
- REPEAT mode
- KEEP-GO mode
- FREERUN mode

Each GPT can operate on either of the two clock sources: 32.768 kHz Real-Time Clock (RTC) or the 13 MHz system clock, with a 4-bit pre-scaler that provides a programmable clock frequency from these two clock sources.

By selecting the desired modes and working clocks, a specific time delay can be obtained. Upon reaching a programmable timer value, an Interrupt Request (IRQ) will be sent to the CPU and System Power Management (SPM).

3.13.1.2.2 Features

- Selection of two clock sources for the up-counter of each GPT
- Programmed to be active in the low power mode
- Interrupt generation when a programmable timer value is reached
- Three comparison modes available for the set timer boundary value

3.13.1.2.3 Block Diagram

Figure 3-234 Block Diagram of APXGPT

3.13.1.2.4 Function Description

The APXGPT is primarily built upon an up-counter that counts using the rising edge of a clock. The operating clock frequency can be selected from two sources, usually 13 MHz and 32.768 kHz, which can be internally divided to provide additional frequency options. As the clock period is known, the counter boundary should be set to obtain a specific time delay. The time is then calculated by multiplying the count by the clock period. Upon reaching the counter boundary, an interrupt request will be generated.

The table below presents detailed descriptions for the four operation modes of each GPT.

Mode	Auto Stop	Interrupt Supported	Count Behavior	When GPTn_COUNT Equals to GPTn_COMPARE	Example: Compare is set to 2 (Underlining means that an interrupt is asserted.)				
ONE-SHOT	Yes	Yes	Count stops when GPTn_COUNT equals GPTn_COMPARE	EN is reset to 0	0,1, <u>2</u> ,2,2,2,2,2,2,2,2,2,				
REPEAT	No	Yes	Count is reset to 0 when GPTn_COUNT equals GPTn_COMPARE	Count is reset to 0	0,1 <u>,2</u> ,0,1, <u>2</u> ,0,1, <u>2</u> ,0,1 <u>,2</u>				
KEEP-GO	No Yes		Count is reset to 0 when the count is overflowed.	No action	0,1, <u>2</u> ,3,4,5,6,7,8,9,10,				
FREERUN	ERUN NO NO		Count is reset to 0 when the count is overflowed.	No action	0,1,2,3,4,5,6,7,8,9,10,				

Table 3-196 Operation Mode of GPT

Note:

- GPTn_COUNT (APXGPT Base address+(0x0008+0x20*(n-1))), GPTn_COMPARE (apxgpt Base address + (0x000C+0x20*(n-1))) (n=0,1,2,3,4,5)
- Each timer operates independently and can be programmed to select between the 32.768 kHz RTC or the13 MHz system clock. Once the clock source is set, the selected clock's division ratio can be programmed and fine-tuned within the range of 1 to 13, or coarse-tuned with values of 16, 32, and 64.

3.13.1.2.4.1 Clocking

The APXGPT module employs four main input clocks, namely:

- slow_clock
- f13m_ck
- pclk_ck
- hclk_ck

The first two clocks serve as the operation clock of the up-counter. Select one of them through the register setting. The APB clock (PCLK) and hopping clock (HCLK) are bus-related clocks.

Name	Frequency	Description
slow_ck	32.768 kHz	APXGPT counter clock
f13m_ck	13 MHz	APXGPT counter clock
pclk_ck	26 MHz	APB clock
hclk_ck	26 MHz	To synchronize with the bus clock

Table 3-197 Clock Source of GPT

3.13.1.2.4.2 Interrupts

When the GPT reaches the programmable compared value of the up-counter, "GPTn" (n = 0, 1, 2, 3, 4, 5) generates an interrupt request (IRQ) to send to the GPU. These GPT interrupts are merged and connected to the SPM.

Upon GPT triggering an IRQ, it issues a wake-up signal to the "Sleep Control" to wake up the MCU if it is in the sleep mode.

3.13.1.2.5 Theory of Operations

The read operation value of the GPT6 64-bit timer is split into two 32-bit APB reads. The lower word is read first, followed by the higher word. The read operation of lower word freezes the "read value" of the higher word, but does not freeze the timer counting. This ensures that the separated read operation acquires the correct timer value.

When programming and utilizing the GPT, note the following points:

- The counter value can be read at any time when the clock source is the system clock or the RTC.
- The comparative value can be programmed at any time. If it is rewritten during a count operation, the counter is reset to 0 and restarts the count.

3.13.1.2.6 Programming Guide

The following sections describe the operating sequence of all the operation modes, using GPTO as an example to demonstrate the programming sequence.

3.13.1.2.6.1 ONE-SHOT Mode

Step	Address	Register Name	Local Address	R/W	Value	Description
Set the	e APXGPT control reg	ister.				
	APXGPT base				Refer to the	Select GPT0 clock source,
1	address + 0x0000	GPT0_CON	CLK	RW	description.	00: System clock (13 MHz)
					uescription.	01: RTC (32.768 kHz)
						Set the GPT0 clock divider,
						0000: Clock source divided by 1
						0001: Clock source divided by 2
						0010: Clock source divided by 3
					Refer to the	0011: Clock source divided by 4
						0100: Clock source divided by 5
						0101: Clock source divided by 6
	APXGPT base					0110: Clock source divided by 7
2	address + 0x0000	GPT0_CON	CLKDIV	RW	description.	0111: Clock source divided by 8
					uescription.	1000: Clock source divided by 9
						1001: Clock source divided by 10
						1010: Clock source divided by 11
						1011: Clock source divided by 12
						1100: Clock source divided by 13
						1101: Clock source divided by 16
						1110: Clock source divided by 32
						1111: Clock source divided by 64

Table 3-198 APXGPT ONE-SHOT Mode Setting Flow

Step	Address	Register Name	Local Address	R/W	Value	Description
						Set the GPT0 control register for
						ONE-SHOT mode.
3	APXGPT base	GPT0 CON	MODE	RW	2'600	00: ONE-SHOT mode
5	address + 0x0000		WODE	11.00	2 000	01: REPEAT mode
						10: KEEP-GO mode
					2'b00Set the GPT0 con ONE-SHOT mode 00: ONE-SHOT mode 10: REPEAT mode 10: KEEP-GO mod 11: FREERUN moRefer to the description.Set the compare Set the compare1'b1Set IRQEN to "1" interrupt.1'b1Set EN to "1" to e 0: No associated generated. 1: Associated inte and waiting for set 4'h2	11: FREERUN mode
4	APXGPT base	GPT0_COMPAR	COMPARE	RW	Refer to the	Set the compare value of CDTO
4	address + 0x000C	E	COMPARE	r vv	description.	Set the compare value of GPT0.
5	APXGPT base	GPT0_CON	IRQEN	RW	1'h1	Set IRQEN to "1" to enable GPT0
5	address + 0x0000	GPT0_CON	INQLIN	L AA	IDI	interrupt.
Enable	GPT0 and wait for G	PT0 interrupt.	•			
6	APXGPT base	GPT0 CON	EN	RW	1'h1	Set EN to "1" to enable GPT0.
0	address + 0x0000			1.00	101	
						Wait for IRQSTA = "1",
	APXGPT base				Pefer to the	0: No associated interrupt is
7	address + 0x0000	GPT0_CON	IRQSTA	RO		generated.
					description.	1: Associated interrupt is pending
						and waiting for service.
Clear G	GPT0 interrupt (Choos	se one of the two	methods)			
	APXGPT base	GPT0 CON	PREFIX	wo	//h2	Set PREFIX= 4'h2 to clear GPT0
8	address + 0x0000		PREFIX		7112	interrupt.
U U	APXGPT base	IRQ_STA	IRQ_STA	wo	1'h1	Interrupt of GPTn. Can be written
	address + 0x0FC0			000	TUT	to 1 to clear.

3.13.1.2.6.2 REPEAT Mode

Table 3-199 APXGPT REPEAT Mode Setting Flow

Step	Address	Register name	Local address	R/W	Value	Description
Set the	APXGPT control reg	ister.				•
1	APXGPT base address + 0x0000	GPT0_CON	CLK	RW	Refer to the description.	Select GPT0 clock source, 00: System clock (13 MHz) 01: RTC (32.768 kHz)
2	APXGPT base address + 0x0000	GPT0_CON	CLKDIV	RW	Refer to the description.	Set the GPT0 clock divider, 0000: Clock source divided by 1 0001: Clock source divided by 2 0010: Clock source divided by 3 0011: Clock source divided by 4 0100: Clock source divided by 5 0101: Clock source divided by 6 0110: Clock source divided by 7 0111: Clock source divided by 8 1000: Clock source divided by 9 1001: Clock source divided by 9

Step	Address	Register name	Local address	R/W	Value	Description
						1010: Clock source divided by 11
						1011: Clock source divided by 12
						1100: Clock source divided by 13
						1101: Clock source divided by 16
						1110: Clock source divided by 32
						1111: Clock source divided by 64
						Set the GPT0 control register for
						REPEAT mode.
3	APXGPT base	GPT0_CON	MODE	RW	2'h01	00: ONE-SHOT mode
5	address + 0x0000	GPT0_CON	WIODE	RVV	N 2'b01	01: REPEAT mode
						10: KEEP-GO mode
						11: FREERUN mode
4	APXGPT base	GPT0_COMPAR	COMPARE	RW	Refer to the	Set the compare value of GPT0.
4	address + 0x000C	E	COMPARE	RVV	description.	Set the compare value of GPT0.
5	APXGPT base	CDTO CON	IRQEN	RW	1'b1	Set IRQEN= "1" to enable GPT0
5	address + 0x0000	GPT0_CON	IKQEN	RVV	TDT	interrupt.
Enable	GPT0 and wait for G	PT0 interrupt				
6	APXGPT base	GPT CON	EN	RW	1'b1	Set EN to "1" to enable GPT0.
0	address + 0x0000			1.00	1.01	
						Wait for IRQSTA = "1",
	APXGPT base				Refer to the	0: No associated interrupt is
7	address + 0x0000	GPT0_CON	IRQSTA	RO	description.	generated.
					uescription.	1: Associated interrupt is pending
						and waiting for service.
Clear C	GPT0 interrupt (Choo	se one of the two	methods)			
	APXGPT base	GPT0_CON	PREFIX	wo	4'h2	Set PREFIX= 4'h2 to clear GPT0
8	address + 0x0000				T 11 2	interrupt.
	APXGPT base	IRQ_STA	IRQ STA	wo	1'b1	Interrupt of GPTn. Can be written
	address + 0x0FC0					to 1 to clear.

3.13.1.2.6.3 KEEP-GO Mode

Table 3-200 APXGPT KEEP-GO Mode Setting Flow

Step	Address	Register name	Local address	R/W	Value	Description	
Set th	Set the APXGPT control register.						
1	APXGPT base address + 0x0000	GPT0_CON	CLK	RW	Refer to the description.	Select the GPT0 clock source, 00: System clock (13 MHz) 01: RTC (32.768 kHz)	
2	APXGPT base address + 0x0000	GPT0_CON	CLKDIV	RW	Refer to the description.	Set the GPT0 clock divider, 0000: Clock source divided by 1 0001: Clock source divided by 2 0010: Clock source divided by 3 0011: Clock source divided by 4	

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Step	Address	Register name	Local address	R/W	Value	Description
						0100: Clock source divided by 5
						0101: Clock source divided by 6
						0110: Clock source divided by 7
						0111: Clock source divided by 8
						1000: Clock source divided by 9
						1001: Clock source divided by 10
						1010: Clock source divided by 11
						1011: Clock source divided by 12
						1100: Clock source divided by 13
						1101: Clock source divided by 16
						1110: Clock source divided by 32
						1111: Clock source divided by 64
						Set the GPT0 control register for
						KEEP-GO mode.
	APXGPT base				0/1.4.0	00: ONE-SHOT mode
3	address + 0x0000	GPT0_CON	MODE	RW	2'b10	01: REPEAT mode
						10: KEEP-GO mode
						11: FREERUN mode
	APXGPT base	GPT0_COMPAR			Refer to the	
4	address + 0x000C	E	COMPARE	RW	description.	Set the compare value of GPT0
_	APXGPT base					Set IRQEN = "1" to enable GPT0
5	address + 0x0000	GPT_IRQEN	IRQEN	RW	1'b1	interrupt.
Enab	le GPT0.					
6	APXGPT base	GPT0_CON	EN	RW	1'b1	Set EN to "1" to enable GPT0.
0	address + 0x0000	GPT0_CON		L A A	1 01	Set EN LO I LO ENADIE GFTO.
						Wait for IRQSTA = "1",
	APXGPT base				Refer to the	0: No associated interrupt is
7	address + 0x0000	GPT0_CON	IRQSTA	RO	description.	generated,
					description.	1: Associated interrupt is pending
						and waiting for service.
Read	the GPT0 counter val	ue	1		1	
8	APXGPT base			RO	Refer to the	The timer counter of CDTO
ð	address + 0x0008	GPT0_COUNT	COUNTER	ĸŬ	description.	The timer counter of GPT0.
Clear	GPT0 interrupt. (Cho	ose one of the two	methods)	•		
	APXGPT base	CRTO CON	PREFIX	wo	4'h2	Set PREFIX = 4'h2 to clear GPT0
~	address + 0x0000	GPT0_CON		000	4 112	interrupt.
9	APXGPT base			14/0	1/61	Interrupt of GPTn. Can be written
	address + 0x0FC0	IRQ_STA	IRQ_STA	WO	1'b1	to 1 to clear.
	1	1	1	I	1	I

3.13.1.2.6.4 FREERUN Mode

Stop	Address	Register name	Local address	R/W	Value	Description		
Step			Local address	R/ W	value	Description		
Set th	ne APXGPT control reg	gister.	1		1			
	APXGPT base				Refer to the	Select GPT0 clock source,		
1	address + 0x0000	GPT0_CON	CLK	RW	description.	00: System clock (13 MHz)		
						01: RTC (32.768 kHz)		
						Set the GPT0 clock divider,		
						0000: Clock source divided by 1		
						0001: Clock source divided by 2		
						0010: Clock source divided by 3		
						0011: Clock source divided by 4		
						0100: Clock source divided by 5		
						0101: Clock source divided by 6		
	APXGPT base				Refer to the	0110: Clock source divided by 7		
2		GPT0_CON	CLKDIV	RW		0111: Clock source divided by 8		
	address + 0x0000	+ 0x0000 description.	description.	1000: Clock source divided by 9				
				1001: Clock source divided by 10				
				1010: Clock source divided by 11				
						1011: Clock source divided by 12		
						1100: Clock source divided by 13		
						1101: Clock source divided by 16		
						1110: Clock source divided by 32		
						1111: Clock source divided by 64		
						Set the GPT0 control register for		
						KEEP-GO mode,		
_	APXGPT base					00: ONE-SHOT mode		
3	address + 0x0000	GPT0_CON	MODE	RW	2'b11	01: REPEAT mode		
						10: KEEP-GO mode		
						11: FREERUN mode		
Enab	Enable GPT0.	I	1	1	I	1		
	APXGPT base							
4	address + 0x0000	GPT0_CON	EN	RW	1'b1	Set EN to "1" to enable GPT0.		
Read	the GPT0 counter val	ue.	1		I	1		
	APXGPT base				Refer to the			
5	address + 0x0008	GPT0_COUNT	COUNTER	RO	description.	The timer counter of GPT0.		

Table 3-201 APXGPT FREERUN Mode Setting Flow

3.13.1.2.6.5 GPT5 64-Bit Counter Read

Table 3-202 GPT5 64-bit Counter Read Flow

Step	Address	Register name	Local address	R/W	Value	Description	
Read	the lower 32 bits of	the GPT5 counter.					
1	APXGPT base address + 0x00A8	GPT5_COUNT_L		RO	Refer to the description.	The lower word of the timer count of GPT5.	
Read	Read the higher 32 bits of the GPT5 counter.						

Step	Address	Register name	Local address	R/W	Value	Description
2	APXGPT base	GPT5 COUNT H		RO	Refer to the	The higher word of the timer count
2	address + 0x00B0			κŪ	description.	of GPT5.

3.13.1.2.7 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

3.13.1.3 Watchdog Timer (WDT)

The WDT module is a part of TOPRGU. For more information refer to Section 5.5 Reset.

3.13.2 Auxiliary Analog-to-Digital Converter (AUXADC)

3.13.2.1 Overview

The Auxiliary Analog/Digital Converter (AUXADC) module is designed to identify the plugged peripheral and perform temperature and voltage measurement. There are 6 input channels that allow diverse applications, such as temperature/voltage measurement and light sensing. The device features one AUXADC module.

3.13.2.2 Features

The module contains:

- Immediate analog-digital conversion
- Background detection and interrupt

3.13.2.3 Block Diagram

The software controls AUXADC through the APB. Once the hardware receives the command, it triggers AUXADC's channel sampling automatically. The software polls the status register or waits for interrupts from the CPU.

Figure 3-235 Block Diagram of AUXADC

3.13.2.4 Function Description

• Immediate analog-digital conversion

In the immediate mode, AUXADC samples the value once only when the flag in the AUXADC_CON1 register is set. For example, if the flag IMMO in AUXADC_CON1 is set, the module samples the data for channel 0. The IMM flags have to be cleared and set again to initialize another sampling. The value sampled for channel 0 is stored in the register AUXADC_DATO. If the AUTOSET(x) flag in the register AUXADC_CON0 is set, the auto-sampling function is enabled in channel(x). The module samples the data for channel(x) whenever the corresponding data register is read. If multiple channels are selected at the same time, the tasks are performed sequentially on every selected channel from channel 5 to channel 0.

Background detection and interrupt

If background detection is enabled, AUXADC automatically compares the selected channel data with the user-defined value. If the results are continuously greater or less than the given value, AUXADC issues an interrupt to inform the system user.

3.13.2.5 AUXADC Timing and Functional Characteristics

Table 3-203 presents timing and functional characteristics for AUXADC in the device.

Parameter		Min	Тур	Max	Unit
f _{OP}	Operating frequency		3.25		MHz
Ν	Resolution			12	Bit
fs	Sampling rate at N-bit		3.25 / (N+8)		MSPS
INsw	Input swing	0.05		1.45	V
CIN	Input capacitance unselected channel		50		pF

Table 3-203 AUXADC Specifications

© 2023-2024 MediaTek Inc. All rights reserved.

Page 386 of 472

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Parameter		Min	Тур	Max	Unit
	Input capacitance selected channel		4		pF
R _{IN}	Input resistance unselected channel	400			MΩ
F _{cycle_latency}	Cycle latency		N+8		1/fOP
DNL	Differential non-linearity		+1.0/-1.0		LSB
INL	Integral non-linearity		+2.0/-2.0		LSB
SNR+D	Signal to noise and distortion ratio (1 kHz full swing input; 1.0833 MHz clock rate)	60	67		dB

3.13.2.6 Theory of Operations

Successive-Approximation Register (SAR) ADC provides low power consumption, cost-effective and medium resolution. The AUXADC module has the SAR ADC architecture.

The following shows an example of 12-bit conversion. V_{REF} is the reference voltage of AUXADC.

AUXADC implements a binary search algorithm. An initial register V_{DA} value, the mid-value between (2¹²-1) and 0, is compared with the input voltage V_{IN} . The value represents V_{REF} /2. If V_{IN} is bigger than V_{DA} , the output of comparison is 1, and the MSB is 1. Otherwise, the MSB is 0. Subsequently, bit 11 is set to 1, and another comparison is done. Bit10 to bit 0 are executed as the previous action. Then, the 12-bit digital value is available.

Figure 3-236 Theory of AUXADC Operation

3.13.2.7 Programming Guide

3.13.2.7.1 Immediate Mode

Table 3-204 Immediate Mode Programming Sequence

Immediate Mode						
Description	R/W	Address	Bit	MACRO	Value	Note
Open AUXADC Clock	w	INFRACFG_AO_BASE + 0x0088	[10]	AUXADC_CG_SET	1'b1	Set 0 to enable AUXADC clock.
Set Immediate Mode	w	AUXADC_BASE + 0x0004	[15:0]	AUXADC_CON1	USER_DEFINED	Set 1 to sample corresponding channel once.
Polling Ready	R	AUXADC_BASE + 0x0014 + n*4	[12]	RDYn	1'b1	Sample data is ready when this bit changes to 1.
Read Result	R	AUXADC_BASE + 0x0014 + n*4	[11:0]	DATn	-	Sample result

3.13.2.7.2 Background Detection

Table 3-205 Background Detection Programming Sequence

Background Detection						
Description	R/W	Address	Bit	MACRO	Value	Note
Set Threshold Voltage	W	AUXADC_BASE + 0x0084	[11:0]	VOL	USER_DEFINED	Set Threshold Voltage
Set Compare direction	W	AUXADC_BASE + 0x0084	[12]	INV	USER_DEFINED	0: Lower 1: Higher
Set Detection Channel	W	AUXADC_BASE + 0x0088	[3:0]	CHSEL	USER_DEFINED	Set channel to be sampled in background.
Set Detection Period	w	AUXADC_BASE + 0x008C	[13:0]	BG_DET_PERIOD	USER_DEFINED	Background sample period: When this value is not 0, the background detection is activated automatically and other ADC sampling functions are stopped. The counter counts by 32K clock. When counter value is greater than DET_PERIOD, the detection is activated.
Set Detection De-bounce	w	AUXADC_BASE + 0x0090	[13:0]	BG_DET_TIME	USER_DEFINED	Background de-bounce time: When the number of the detected channel is higher or lower than the pre-defined voltage and exceeds "debounce_time", the interrupt is issued.

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

3.13.3 Thermal Control Subsystem (TCSYS)

3.13.3.1 Introduction

Thermal management is crucial on the SoC platform. Through thermal management, an SoC can operate within specific temperature constraints whole fulfilling computing performance requirements. Operations under over-temperature condition for a long period of time may cause reliability issues.

The thermal management system includes several thermal sensors embedded in possible hotspots on the die and a thermal controller module for periodic measurement for each hotspot. The measurement results are read by the software. However, in order to minimize software efforts for monitoring temperature, the thermal controller generates interrupts to a system handler for abnormal conditions.

3.13.3.2 Features

The thermal management system includes the following features:

- Support up to four thermal sensors per hardware module unit.
- Programmable periodic temperature measurement.
- Two independent Finite State Machines (FSMs) for temperature monitoring.
- Different types of low pass filters for thermal sensor readings.

3.13.3.3 Block Diagram

There are three major building blocks for the thermal control subsystem, as Figure 3-237 shows.

- Sensing device: Thermal Sensing Micro-Circuit Unit (TSMCU)
- Convertor: Low Voltage Thermal Sensor (LVTS) convertor
- Digital controller: LVTS_CTRL

Figure 3-237 Thermal Control Subsystem

3.13.3.4 TCSYS Signal Descriptions

Table 3-206 presents TCSYS signal descriptions.

Signal Name	Туре	Description	Ball Location
LVTS_26M	DI	LVTS supported 26 MHz input frequency	AD37, P30
LVTS_FOUT	DO	LVTS output clock frequency	N30, AC35
LVTS_SCF	DI	LVTS serial clock frequency	N34, AD36
LVTS_SCK	DI	LVTS serial clock	P33, AB37
LVTS_SDI	DI	LVTS data input	P35, AB35
LVTS_SDO	DO	LVTS data output	AD35, N31

3.13.3.5 Function Description

Thermal controller periodically polls all sensors for SoC operating within a pre-defined temperature range to avoid function failure and reliability issues. According to the temperature measurement, the system performance can be adjusted for a system design with power dissipation being monitored. Figure 3-238 shows the temperature measurement scheme. Note that the hottest location in an SoC may vary in different applications.

When the thermal controller informs the software of an abnormal condition, the consecutive power reduction methodology should be efficient and with low latency.

Figure 3-238 Block Diagram of System Temperature Measurement Scheme

3.13.3.6 Theory of Operations

3.13.3.6.1 Interrupt Control

Figure 3-239 shows the interrupt conditions of high and low temperature monitors. Software can determine which temperature sensors to be monitored. Once any of the following three interrupt conditions occur in any of the monitored temperature sensors, an interrupt is generated.

- Cold interrupt: Asserted when the temperature crosses and falls below the cold threshold.
- Hot interrupt: Asserted when the temperature crosses and rises above the hot threshold.
- Hot-to-normal interrupt: Asserted when the temperature crosses and falls below the hot-to-normal threshold.

Figure 3-240 shows the Finite State Machine (FSM) diagram. The states are as listed below.

- COLD_ST: The temperature is lower than the cold threshold.
- NORMAL_ST: The temperature is within the hot-to-normal threshold and cold threshold.
- HOT1_ST: The temperature is within the hot-to-normal threshold and hot threshold, and the previous state is NORMAL_ST.
- VERY_HOT_ST: The temperature is higher than the hot threshold.
- HOT2_ST: The temperature is within the hot-to-normal threshold and hot threshold, and the previous state is VERY_HOT_ST.

Figure 3-239 Interrupt Conditions for High/Low Temperature Monitoring

Figure 3-240 Finite State Machine for High/Low Temperature Monitoring

The system also provides a feature to control the junction temperature within the pre-defined HIGH-OFFSET and LOW-OFFSET. Figure 3-241 depicts the concept of the feature and Figure 3-242 shows the FSM. There are two interrupts and two alarms:

- LOW-OFFSET alarm to RGU: Asserted when the temperature crosses and drops below the low offset.
- HIGH-OFFSET alarm to RGU: Asserted when the temperature crosses and rises above the high offset.
- LOW-OFFSET Interrupt: Asserted when the temperature crosses and drops below the low offset. The FSM transitions from the NORMAL state into the LOW OFFSET state.
- HIGH-OFFSET Interrupt: Asserted when the temperature crosses and rises above the high offset. The FSM transitions from the NORMAL state into the HIGH OFFSET state.

Figure 3-241 Interrupt Conditions of High/Low OFFSET Monitoring

Figure 3-242 Finite State Machine for High/Low OFFSET Monitoring

3.13.3.6.2 Thermal Sensor Locations

Thermal sensors are placed at different locations within a die for monitoring the junction temperatures of the different die locations.

Table 3-208 lists the locations of all thermal sensors.

Table 3-207 Locations Monitored by Temperature Sensors

Core	Module	Sensor
#1	BIG-CPU (Bottom)	TS-1 and TS-2
#2	BIG-CPU (Top)	TS-3 and TS-4
#3	CPU	TS-5 to TS-8
#4	APU	TS-9 and TS-10
#5	GPU	TS-11 and TS-12
#6	SOC/TOP	TS-13 to TS-15
#7	САМ	TS-16 and TS-17

Note:

• The difference between BIG-CPU and CPU is that CPU represents cores other than Big Cores.

3.13.3.7 Programming Guide

Table 3-208 lists the thermal controller programming sequence. TMU_BASE (CPU View):

- THERM_CTRL_AP register base address: 0x1100B000
- THERM_CTRL_MCU register base address: 0x11278000

Step	Sequence	REG_Name	REG_Value	Address Offset
1	Enable controller clock	LVTSCLKEN	0x0000001	TMU_BASE+0x00E4
2	Establish LVTS connection	LVTS CONFIG	0xC103FFFF	TMU BASE+0x0050
2	(Set in order, 2 us delay for each command)	LV13_CONFIG	0xC502FF55	TIVIO_BASE+0x0030
3	Check LVTS connection ID	LVTS_ID	Read Only	TMU_BASE+0x004C
			0xC1030E01	
			0xC1030CFC	
			0xC1030A8C	
		LVTS_CONFIG	0xC103098D	TMU_BASE+0x0050
4	Initialize LVTS device		0xC10308F1	
4	(Set in order, 2 us delay for each command)		0xC10307A6	
			0xC10306b8	
			0xC1030500	
			0xC1030420	
			0xC1030300	
		LVTSEDATA00	0x00xxxxxx	TMU_BASE+0x0054
5	Prepare calibration data	LVTSEDATA01	0x00xxxxxx	TMU_BASE+0x0058
5		LVTSEDATA02	0x00xxxxxx	TMU_BASE+0x005c
		LVTSEDATA03	0x00xxxxxx	TMU_BASE+0x0060
6	Configure PNP data to select the monitored sensors	LVTSTSSEL	0x13121110	TMU_BASE+0x0040
7	Configure sampling method for the thermal sensors (optional)	LVTSMSRCTLO	0x000006DB	TMU_BASE+0x0038
8	Configure measurement period and cycles (optional)	LVTSMONCTL1	0x000000C	TMU_BASE+0x0004

Table 3-208 Thermal Controller Programming Guide

© 2023-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Step	Sequence	REG_Name	REG_Value	Address Offset
		LVTSMONCTL2	0x000101AD	TMU_BASE+0x0008
9	Trigger events setting (optional)	LVTSMONINT	User-defined	TMU_BASE+0x000C
10	Enable periodical measurement for the thermal sensors	LVTSMONCTLO	0x0000020F	TMU_BASE+0x0000
				TMU_BASE+0x0090 TMU_BASE+0x0094
11	Read thermal sensors measurement results	LVTSMSR2 LVTSMSR3	LVTSMSR2 Read only TMU_BA	TMU_BASE+0x0098 TMU_BASE+0x0098 TMU_BASE+0x0088

3.14 Boot Flash

The device supports the following boot flash:

- eMMC
- SPI NOR

Table 3-209 presents the boot flash selection options.

Table 3-209 Boot Flash Selection

AUD_SYNC_MOSI	Boot Flash	
0	eMMC (default)	
1	SPI NOR	

3.15 ROM Power Down Mode

After system boot, ROM can be powered down and prevented from any probe of ROM content.

4 Ball Map

Figure 4-1 presents simplified diagram of the location of the balls on the package.

Figure 4-1 Ball Map Diagram

For detailed information about package outlines, thermal characteristics, and markings, see Chapter 7 Package Information.

MEDIATEK

4.1 Quadrant Pinout

Figure 4-2 shows a top view mapping of the package quadrants.

1	2 4 6 8 10 12 L 3 5 7 9 11 13	14 16 18 20 22 24 15 17 19 21 23 25	26 28 30 32 34 36 27 29 31 33 35 37
A B C E F G H J K L M N	Top Left	Top Center	Top Right
P R T V W Y AA AB AC AD AE	Middle Left	Middle Center	Middle Right
AF AG AJ AK AL AM AP AR AT AU	Bottom Left	Bottom Center	Bottom Right

Figure 4-2 Package Quadrants Mapping

Table 4-1 shows pin mapping on the top left part of the package.

	Table 4-1 Ball Map-Top Left 1 2 3 4 5 6 7 8 9 10 11 12 13														
	1	2	3	4	5	6	7	8	9	10	11	12	13		
Α	DUMMY	DUMMY	EMI2_TP	EMI2_DQ8	DVSS	DVSS	EMI2_DMI1		EMI2_DQ15		EMI2_DQ0		EMI2_DMI0		
В	DUMMY	EMI2_EXTR	DVSS	DVSS	DVSS	EMI2_DQS1_T	DVSS	EMI2_DQ14	DVSS	EMI2_DQ7	DVSS	EMI2_DQ1	DVSS		
с		DVSS	MSDC1_DAT3	MSDC1_DAT2	DVSS	EMI2_DQS1_C	DVSS	DVSS	EMI2_DQ12	DVSS	DVSS	DVSS	DVSS		
D	MSDC1_DAT1	MSDC1_DAT0	MSDC1_CMD	MSDC1_CLK	DVSS	DVSS	EMI2_DQ13	EMI2_DQ10	DVSS	DVSS	DVSS	DVSS	EMI2_DQ3		
E	DVDD18_MSDC1	SPIM2_MISO	CMMPDN1	CMMCLKO	CMMCLK1	DVSS	EMI2_DQ9	DVSS	EMI2_DQ11	DVSS	EMI2_DQS0_C	DVSS	EMI2_DQ5		
F		SPIM2_MOSI		CMMCLK2	SCL5	SDA5	DVSS	DVSS	DVSS	DVSS	EMI2_DQS0_T	DVSS	DVSS		
G	SPIM2_CLK	SPIM2_CSB	CMMRST0	CMMPDN0	CMMRST1	SDA6	DVDD28_MSDC1	DVSS	DVSS	DVSS	DVSS	DVSS	EMI2_DQ2		
н				DVSS	DVSS	DVSS	SCL6	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		
J	DVSS	CSI1A_L1P_TOC	CSI1A_L1N_T1A	CSI1A_LON_TOB	CSI1A_LOP_TOA	DVSS	DVSS	DVSS	DVSS	DVSS	DVDD18_IORT	DVSS	AVDD12_EMI2		
к			CSI1B_LON_TOB	DVSS	CSI1B_LOP_TOA	CSI1A_L2N_T1C	CSI1A_L2P_T1B	DVSS	DVSS	DVSS	DVSS		AVDD075_EMI2		
L			CSI1B_L1P_TOC	CSI1B_L1N_T1A	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		DVDD_CORE		
м				DVSS	DVSS	CSIOA_L2P_T1B	DVSS	DVSS	AVDD12_CSI1	DVSS	DVSS		DVSS		
N	DVSS	CSIOA_LOP_TOA	CSIOA_LON_TOB	CSIOA_L1P_TOC	CSIOA_L1N_T1A	CSIOA_L2N_T1C	DVSS			DVSS			DVSS		

Table 4-2 shows pin mapping on the top center part of the package.

Table 4-2 Ball Map-Top Center

	14	15	16	17	18	19	20	21	22	23	24	25
Α			EMI2_CS1		EMI2_CKE0		EMI3_CKE0		EMI3_CS1			EMI3_DMI0
В	EMI2_DQ6	DVSS	EMI2_CA0		EMI2_CKE1		EMI3_CKE1		EMI3_CA0	DVSS	EMI3_DQ6	DVSS
с	DVSS	DVSS	EMI2_CA1	DVSS	EMI2_CS0	DVSS	EMI3_CS0	DVSS	EMI3_CA1	DVSS	DVSS	DVSS
D	DVSS	DVSS	DVSS	EMI2_CA5	DVSS	NC	DVSS	DVSS	EMI3_CA3	DVSS	DVSS	EMI3_DQ5
E	DVSS	DVSS	DVSS	EMI2_CA4	DVSS	DVSS	DVSS	DVSS	EMI3_CA4	DVSS	DVSS	EMI3_DQ3
F	DVSS	EMI2_CA2	EMI2_CA3	DVSS	EMI2_CK_T	DVSS	EMI3_CK_T	DVSS	DVSS	NC	DVSS	DVSS
G	EMI2_DQ4	DVSS	NC	DVSS	EMI2_CK_C	DVSS	EMI3_CK_C	DVSS	EMI3_CA5	EMI3_CA2	DVSS	EMI3_DQ4
н	DVSS	DVSS	DVSS	DVSS	DVSS	NC	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS
J	DVSS	AVDDQ_EMI2	DVSS	AVDDQ_EMI2	DVSS	AVDDQ_EMI2	DVSS	AVDDQ_EMI2	DVSS	AVDDQ_EMI2	AVDD18_EMI2	DVSS
к	AVDDQ_EMI2	AVDD2_EMI2	AVDDQ_EMI2	AVDD2_EMI2	AVDDQ_EMI2	AVDD2_EMI2	AVDDQ_EMI2	AVDD2_EMI2	AVDDQ_EMI2	AVDD2_EMI2	AVDD075_EMI2	DVSS
L								DVDD_PROC_B		DVSS	AVDD18_PROC	DVSS
м	DVDD_MM	DVSS	DVDD_SRAM_MM	DVSS	DVDD_MM	DVDD_MM	DVDD_CORE	DVDD_PROC_B	DVDD_SRAM_PROC_B	DVSS	DVSS	DVDD_PROC_B
N	DVDD_MM	DVDD_MM	DVSS	DVDD_MM	DVSS	DVDD_MM	DVDD_CORE	DVDD_PROC_B	DVDD_PROC_B	DVSS	DVDD_PROC_B	DVDD_PROC_B

Table 4-3 shows pin mapping on the top right part of the package.

					Table 4	4-3 Ball Map-Top	Right				
26	27	28	29	30	31	32	33	34	35	36	37
	EMI3_DQ0		EMI3_DQ15		EMI3_DMI1	DVSS	EMI3_DQS1_T	EMI3_DQ9	DVSS	DUMMY	DUMMY
EMI3_DQ1	DVSS	EMI3_DQ7	DVSS	EMI3_DQ14	DVSS	DVSS	EMI3_DQS1_C	DVSS	DVSS	EMI2_RESET_N	DUMMY
DVSS	EMI3_DQ2	DVSS	EMI3_DQ11	DVSS	DVSS	EMI3_DQ13	DVSS	EMI3_DQ8	DVSS	DVSS	DVDD18_IOEMMC
DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	EMMC_DAT0	DVSS	EMMC_DAT4	EMMC_DAT2	EMMC_DAT7
DVSS	EMI3_DQS0_T	DVSS	EMI3_DQ12	EMI3_DQ10	DVSS	EMMC_DAT3	DVSS	EMMC_RSTB	EMMC_DSL	EMMC_DAT6	
DVSS	EMI3_DQS0_C	DVSS	DVSS	DVSS	DVSS	EMMC_CLK	EMMC_CMD	DVSS	DVSS	EMMC_DAT1	EMMC_DAT5
DVSS	DVSS	DVSS	DVSS	12SO2_D2	I2SO2_D1	I2SIN_D2	I2SIN_D1	DVSS	DVSS	I2SIN_MCK	DVDD18_IOLT
DVSS	DVDD18_VQPS	DVSS	DVSS	DVSS	KPCOLO	I2SO2_D3	I2SO2_BCK	I2SO2_MCK	I2SIN_D3	I2SIN_BCK	
DVSS	DVSS	DVSS	DVSS	KPROW0	KPCOL1		I2SO2_D0	I2SO2_WS		I2SIN_WS	I2SIN_D0
DVDD_PROC_B	DVDD_PROC_B	DVDD_PROC_B	DVSS	KPROW1	PWRAP_SPI_CK	PWRAP_SPI_CSN	SPMI_M_SCL	PMIC_WATCHDOG	SPMI_M_ SDA	SCL4	SDA4
DVDD_PROC_B	DVDD_PROC_B	DVDD_PROC_B	DVSS	PWRAP_SPI_ MO	PWRAP_SPI_MI		PMIC_ SRCLKENA0	PMIC_SRCLKENA1		SDA1	
DVDD_PROC_B	DVDD_PROC_B	DVDD_PROC_B	DVSS	AUD_DAT_ MISO0	SCP_VREQ_VAO	AUD_DAT_MISO1	AUD_CLK_MOSI	AUD_DAT_MOSI0	AUD_SYNC_ MOSI	SCL1	DVSS
DVDD_SRAM_ PROC_B	DVSS	DVSS	DVSS	DMIC1_CLK	DMIC1_DAT		AUD_DAT_MOSI1	DMIC2_CLK		DVSS	PMIC_RTC32K_CK

Table 4-4 shows pin mapping on the middle left part of the package.

	Table 4-4 Ball Map-Middle Left													
	1	2	3	4	5	6	7	8	9	10	11	12	13	
Ρ	CSIOB_LON_TOB	CSIOB_LOP_TOA	CSIOB_L1P_TOC	CSIOB_L1N_T1A	CSIOB_L2P_T1B	CSIOB_L2N_T1C	DVSS	AVDD12_CSI0	DVSS	DVSS	DVSS		DVSS	
R			DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		DVDD_SRAM _MM	
т	JTDO	JTRST	DVSS	JTDI	ЈТСК	JTMS	SPIM1_MISO	SPIM1_MOSI	SPIM1_CSB	SPIM1_CLK	SPIM0_CLK		DVSS	
U		UART0_TXD	UARTO_RXD	UART2_TXD	UART2_RXD		SPIM0_MIO2	SPIM0_MIO3	DVDD28_IODPI	GPIO01		DVDD_CORE	DVDD_CORE	
v	UART1_TXD	UART1_RXD		GPIO09	GPIO10	SPIM0_CSB	SPIM0_MOSI	SPIM0_MISO				DVSS	AVDD18_ PLLGP34	
w	SDA3	SCL3	GPIO06	GPIO07	GPIO08	SDA0	GPIO05	GPIO11				DVSS	AVDD18_ PLLGP34	
Y		SCL2		SCL0	DSI1_DSI_TE	GPIO02	GPIO03	GPIO04	DSI0_LCM_RST	GPIO00	DISP_PWM1		DVDD_APU	
AA	PCIE_CLKREQ_N	SDA2	PCIE_PERESET_N	PCIE_WAKE_N	DPI_D11	DPI_D12	DSI0_DSI_TE	DPI_D5	DISP_PWM0	DVDD18_IORM	DSI1_LCM_RST		DVDD_APU	
AB	DPI_CK	DPI_DE	DPI_D4	DPI_D15	DPI_D9	DPI_D8	DPI_D7	DPI_D2	DPI_D0			DVSS	DVDD_SRAM _APU	
AC				DPI_D3	DPI_D10	DPI_D13	DPI_D14	DPI_D6	DPI_D1			DVSS	DVDD_SRAM _GPU	
AD	DVDD18_IODPI	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DPI_VSYNC	DPI_HSYNC	DVSS	DVDD_GPU	
AE	AVDD12_ AUXADC	AUXIN3	AUXIN2	AUXIN4	AUXIN5	AUXINO	REFP	DVSS	DVSS	AVDD18_DSI	AVDD075_DRV _DSI	DVSS	DVDD_GPU	

Table 4-5 shows pin mapping on the middle center part of the package.

						Table 4-5 Ball	iviap-iviidale Cer	iter				
-	14	15	16	17	18	19	20	21	22	23	24	25
Ρ	DVDD_MM	DVDD_CORE	DVSS	DVDD_MM	DVSS	DVDD_MM	DVDD_MM	DVSS	DVSS	DVSS	DVDD_PROC_L	DVSS
R	DVDD_MM	DVDD_CORE	DVSS	DVDD_MM	DVSS	DVDD_MM	DVDD_MM	DVDD_SRAM_ PROC_L	DVDD_PROC_L	DVSS	DVSS	DVDD_PROC_L
т	DVDD_MM	DVDD_MM	DVDD_MM	DVDD_MM	DVSS	DVDD_CORE			DVDD_PROC_L	DVSS	DVSS	DVDD_PROC_L
U	DVDD_CORE	DVDD_CORE	DVDD_CORE	DVDD_CORE	TN_ APPLLGP	AVDD12_PLLGP1	DVDD_CORE	DVSS	DVDD_PROC_L	DVSS	DVDD_PROC_L	DVDD_PROC_L
v	AVDD12_ PLLGP34	DVSS	DVDD_APU	DVDD_CORE	DVDD_CORE	TP_APPLLGP	AVDD18_PLLGP1	DVSS	DVDD_PROC_L	DVSS	DVDD_SRAM_ PROC_L	DVSS
w	AVDD12_ PLLGP34	DVSS	DVDD_APU	AVDD18_APU	DVSS	DVDD_CORE	DVDD_CORE	DVSS	DVSS	DVSS	DVDD_PROC_L	DVSS
Y	DVDD_APU	DVSS	DVDD_APU	DVDD_APU	DVSS	DVDD_CORE	DVDD_CORE	DVSS	DVDD_SRAM_CORE	DVDD_CORE	DVDD_CORE	DVDD_CORE
AA	DVDD_APU	DVSS	DVDD_APU	DVDD_APU	DVSS	DVDD_CORE	DVDD_CORE	DVSS	DVSS	DVDD_CORE	DVDD_CORE	DVSS
AB	DVDD_APU	DVSS	DVDD_APU	DVSS	DVSS	DVDD_CORE	DVDD_CORE	DVSS	DVSS	DVDD_CORE	DVDD_CORE	DVSS
AC	DVDD_GPU	DVDD_GPU	AVDD12_PLLGP2	AVDD18_PLLGP2	DVSS	DVDD_CORE	DVDD_CORE	DVSS	DVSS	DVDD_CORE	DVDD_CORE	DVSS
AD	DVDD_GPU	DVDD_GPU	DVDD_GPU	DVSS	DVSS	DVDD_ADSP	DVDD_ADSP	DVSS	DVDD_SRAM_CORE	DVDD_CORE	DVDD_CORE	DVSS
AE	DVDD_GPU	DVDD_GPU	DVDD_GPU	DVSS	DVSS	DVDD_ADSP	DVDD_ADSP	DVSS	DVSS	DVDD_CORE	DVDD_CORE	

Table 4-5 Ball Map-Middle Center

Table 4-6 shows pin mapping on the Middle Right part of the package.

					Table 4-6 Ball	Map-Middle Rig	ht					
26	27	28	29	30	31	32	33	34	35	36	37	
DVSS	DVSS	DVSS	DVSS	DMIC1_DAT_ R	USB2_IDDIG	USB2_DRV_VBUS	DMIC2_DAT	USB0_VBUS_VALID	DMIC2_DAT_ R	USB0_DRV_ VBUS		Р
DVDD_PROC_L	DVDD_PROC_L	DVSS	DVSS	USB2_VBUS_ VALID	GPIO12		USB1_DRV_VBUS	USB1_IDDIG		USB0_IDDIG	DVDD18_IOLT	R
DVDD_PROC_L	DVDD_PROC_L	DVDD_PROC_L	DVSS	GPIO13	GPIO14	SYSRSTB	USB1_VBUS_VALID	TESTMODE	DVSS	DVSS	DVSS	т
DVDD_PROC_L	DVDD_PROC_L	AVDD18_USB_P2	AVDD33_USB_P2	DVSS	DVSS	GPIO15	AVDD33_USB_P0	DVSS	DVSS	USB_DM_P1	USB_DP_P1	U
DVSS	DVDD_PROC_L		DVSS	DVSS	DVSS	AVDD33_USB_P1	DVSS	USB_DP_P2	USB_DM_P2	DVSS		v
		AVDD18_USB_P0	AVDD12_USB_P0	DVSS	USB_DM_P0	USB_DP_P0	DVSS	DVSS	DVSS	SSUSB_RXN	SSUSB_RXP	w
	DVSS	AVDD12_USB_P1	AVDD12_USB_P2	DVSS	DVSS	DVSS	SSUSB_TXP	SSUSB_TXN	DVSS	DVSS		Y
DVSS	DVSS		AVDD18_USB_P1			DVSS	DVSS	DVSS	GPIO17	DVDD28_ MSDC2		AA
	DVSS		DVSS	DVSS	PCM_DI	GPIO16	DPTX_HPD	HDMITX_PWR5V	MSDC2_DAT3	DVDD18_ MSDC2	MSDC2_DAT2	AB
	DVSS	AVDD12_SSUSB	AVDD18_SSUSB	PCM_DO	PCM_SYNC	HDMITX_HTPLG	HDMITX_CEC		MSDC2_CMD			AC
DVSS		AVDD12_CKSQ	AVDD18_CKSQ	PCM_CLK	DVDD18_IOLM	HDMITX_SCL	HDMITX_SDA	DVSS	MSDC2_CLK	MSDC2_ DAT1	MSDC2_DAT0	AD
	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	X26M_IN	DVSS	DVSS		AE

Table 4-7 shows pin mapping on the Bottom Left part of the package.

_	Table 4-7 Ball Wap-Bottom Left													
AF	AVDD18_AUXADC	AUXIN1	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		DVSS	DVDD_SRAM_GPU	
AG				DVSS	DSI0_D0P_T0C	DSI0_D2N_T0B	DSI0_D2P_T0A	DVSS	DVSS		DVSS			
АН	DVSS	DSI0_D3N	DSI0_D1N_T2B	DSI0_D1P_T2A	DSI0_D0N_T1A	DSI0_CKP_T1B	DSI0_CKN_T1C	DVSS	DVSS	AVDD12_DSI	AVDD18_PCIE	DVSS		
AJ			DSI0_D3P_T2C	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		AVDD12_PCIE	DVSS	DVSS	
АК					DSI1_D0N_T1A	DSI1_CKN_T1C	DSI1_CKP_T1B	DSI1_D3N	DVSS	DVSS	DVSS	DVSS	DVSS	
AL	DVSS	DVSS	DSI1_D2P_T0A	DSI1_D2N_T0B	DSI1_D0P_T0C	DSI1_D1N_T2B	DSI1_D1P_T2A	DSI1_D3P_T2C	DVSS	DVSS	DVSS	DVSS	EMI1_DQ4	
АМ	PCIE_LN0_TXP	PCIE_LN0_TXN	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	EMI1_DQS0_C	DVSS	DVSS	
AN		DVSS	PCIE_CKN	PCIE_CKP	DVSS	DVSS	DVSS	EMI1_DQ10	EMI1_DQ12	DVSS	EMI1_DQS0_T	DVSS	EMI1_DQ3	
АР	PCIE_LN0_RXN	PCIE_LN0_RXP	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	EMI1_DQ5	
AR		DVSS	EMI0_TP	EMI1_DQ8	DVSS	EMI1_DQ13	DVSS	DVSS	EMI1_DQ11	DVSS	EMI1_DQ2	DVSS	DVSS	
AT	DUMMY	EMI0_EXTR	DVSS	DVSS	EMI1_DQS1_C	DVSS	DVSS	EMI1_DQ14	DVSS	EMI1_DQ7	DVSS	EMI1_DQ1	DVSS	
AU	DUMMY	DUMMY	DVSS	EMI1_DQ9	EMI1_DQS1_T	DVSS	EMI1_DMI1		EMI1_DQ15		EMI1_DQ0		EMI1_DMI0	
	1	2	3	4	5	6	7	8	9	10	11	12	13	

Table 4-7 Ball Map-Bottom Left

Table 4-8 shows pin mapping on the Bottom Center part of the package.

AF	DVDD_GPU	DVDD_GPU	DVDD_GPU	DVDD_GPU	DVSS	DVDD_ADSP	DVDD_ADSP	DVSS	DVDD_SRAM_CORE	DVDD_CORE	DVDD_CORE			
AG	DVDD_CORE													
AH	AVDD075_EMI0	AVDD2_EMI0	AVDDQ_EMI0	AVDD2_EMI0	AVDDQ_EMI0	AVDD2_EMI0	AVDDQ_EMI0	AVDD2_EMI0	AVDDQ_EMI0	AVDD2_EMI0	AVDD075_EMI0	AVDD18_EMI0		
AJ	AVDD12_EMI0	AVDDQ_EMI0	DVSS	AVDDQ_EMI0	DVSS	AVDDQ_EMI0	DVSS	AVDDQ_EMI0	DVSS	AVDDQ_EMI0	AVDDQ_EMI0	DVSS		
AK	DVSS	DVSS	DVSS	DVSS	DVSS	NC	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS		
AL	DVSS	EMI1_CA2	EMI1_CA5	DVSS	EMI1_CK_C	DVSS	EMI0_CK_C	DVSS	NC	DVSS	EMI0_DQ4	EMI0_DQ2		
AM	DVSS	NC	DVSS	DVSS	EMI1_CK_T	DVSS	EMI0_CK_T	DVSS	EMI0_CA3	EMI0_CA2	DVSS	DVSS		
AN	DVSS	DVSS	EMI1_CA4	DVSS	DVSS	DVSS	DVSS	EMI0_CA4	DVSS	DVSS	DVSS	EMI0_DQ5		
АР	DVSS	DVSS	EMI1_CA3	DVSS	DVSS	NC	DVSS	EMI0_CA5	DVSS	DVSS	DVSS	EMI0_DQ3		
AR	DVSS	DVSS	EMI1_CA1	DVSS	EMI1_CS0	DVSS	EMI0_CS0	DVSS	EMI0_CA1	DVSS	DVSS	DVSS		
AT	EMI1_DQ6	DVSS	EMI1_CA0		EMI1_CKE1		EMI0_CKE1		EMI0_CA0	DVSS	EMI0_DQ6	DVSS		
AU			EMI1_CS1		EMI1_CKE0		EMI0_CKE0		EMI0_CS1			EMI0_DMI0		
	14	15	16	17	18	19	20	21	22	23	24	25		

Table 4-8 Ball Map-Bottom Center

Table 4-9 shows pin mapping on the Bottom Right part of the package.

Table 4-9 Ball Map-Bottom Right

												_
DVSS	DVSS	DVSS	DVSS	DVSS	EDP_LN1_TXN	EDP_LN1_TXP	DVSS	DVSS	DVSS	EDPAUXP	EDPAUXN	A
AVDD18_EDPTX	AVDD12_EDPTX	DVSS	EDP_LN0_TXN	EDP_LN0_TXP	DVSS	DVSS	DVSS	DVSS	DP_LN0_TXP			A
		AVDD18_DPTX	DVSS	DVSS	DP_LN1_TXN	DP_LN1_TXP	DVSS	DVSS	DP_LN0_TXN			A
DVSS	DVSS	DVSS	AVDD12_DPTX	DVSS	DVSS	DVSS	DP_LN2_TXN	DP_LN2_TXP	DVSS	DPAUXP	DPAUXN	А
DVSS	DVSS	DVSS	DVSS	DVSS	DP_LN3_TXN	DP_LN3_TXP	DVSS	DVSS	HDMITX21_CH2_P			А
DVSS	DVSS	AVDD12_ HDMITX21	AVDD18_ HDMITX21		DVSS	DVSS	DVSS	DVSS	HDMITX21_CH2_ M			А
DVSS	EMI0_DQS0_T	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	DVSS	HDMITX21_CH1_ P	HDMITX21_CH1_ M	A
DVSS	EMI0_DQS0_C	DVSS	EMI0_DQ11	DVSS	EMI0_DQ9	DVSS	DVSS	HDMITX21_CH0_ M	HDMITX21_CH0_P			A
DVSS	DVSS	DVSS	DVSS	EMI0_DQ10	EMI0_DQ13	DVSS	DVSS	DVSS		DVSS	DVSS	А
DVSS	DVSS	DVSS	EMI0_DQ12	DVSS	DVSS	EMI0_DQS1_C	DVSS	HDMITX21_CLK_ P	HDMITX21_CLK_ M			AI
EMI0_DQ1	DVSS	EMI0_DQ7	DVSS	EMI0_DQ14	DVSS	EMI0_DQS1_T	DVSS	DVSS	DVSS	DVSS	DUMMY	A
	EMI0_DQ0		EMI0_DQ15		EMI0_DMI1	DVSS	DVSS	EMI0_DQ8	EMI0_RESET_N	DUMMY	DUMMY	А
26	27	28	29	30	31	32	33	34	35	36	37	

4.2 Pin Characteristics

Table 4-10 describes the pin characteristics and the multiplexed signals on each ball.

				4-10 Fill Character					
Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO0	DIO	0					
		TP_GPIO0_AO	DIO	1	-				
		SPIM5_CSB	DO	2					
GPIO00	Y10	UTXD1	DO	3	0		DVDD18_IORM	OFF	I
		DMIC3_CLK	DO	4	-				
		I2SIN_MCK	DIO	5	-				
		I2SO2_MCK	DO	6	-				
		GPIO1	DIO	0					
		TP_GPIO1_AO	DIO	1					
		SPIM5_CLK	DO	2					
GPIO01	U10	URXD1	DI	3	0		DVDD18_IORM	OFF	I
		DMIC3_DAT	DI	4					
		I2SIN_BCK	DIO	5					
		I2SO2_BCK	DIO	6					
		GPIO2	DIO	0					
		TP_GPIO2_AO	DIO	1					
		SPIM5_MOSI	DIO	2					
GPIO02	Y6	URTS1	DO	3	0		DVDD18_IORM	OFF	I
		DMIC3_DAT_R	DI	4					
		I2SIN_WS	DIO	5					
		12SO2_WS	DIO	6					

Table 4-10 Pin Characteristics

UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO3	DIO	0					
		TP_GPIO3_AO	DIO	1					
		SPIM5_MISO	DIO	2	-				
GPIO03	Y7	UCTS1	DI	3	0		DVDD18_IORM	OFF	I
		DMIC4_CLK	DO	4					
		I2SIN_D0	DI	5	-				
		I2SO2_D0	DO	6	-				
		GPIO4	DIO	0					
		TP_GPIO4_AO	DIO	1	-				
		SPDIF_IN2	DI	2					
GPIO04	Y8	I2SO1_MCK	DO	3	0		DVDD18_IORM	OFF	I
		DMIC4_DAT	DI	4					
		I2SIN_D1	DI	5					
		I2SO2_D1	DO	6					
		GPIO5	DIO	0					
		TP_GPIO5_AO	DIO	1					
		SPDIF_IN1	DI	2					
GPIO05	W7	I2SO1_BCK	DO	3	0		DVDD18_IORM	OFF	I
		DMIC4_DAT_R	DI	4					
		I2SIN_D2	DI	5					
		I2SO2_D2	DO	6					
		GPIO6	DIO	0					
		TP_GPIO6_AO	DIO	1					
		SPDIF_IN0	DI	2]				
GPIO06	W3	12SO1_WS	DO	3	0		DVDD18_IORM	OFF	I
		DMIC1_CLK	DO	4					
		I2SIN_D3	DI	5					
		I2SO2_D3	DO	6					

© 2023 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO7	DIO	0					
		TP_GPIO7_AO	DIO	1					
		SPIM3_CSB	DO	2					
GPIO07	W4	TDMIN_MCK	DIO	3	0		DVDD18_IORM	OFF	I
		DMIC1_DAT	DI	4					
		CMVREF0	DO	5					
		CLKM0	DO	6					
		GPIO8	DIO	0					
		TP_GPIO0_AO	DIO	1					
		SPIM3_CLK	DO	2					
GPIO08	W5	TDMIN_BCK	DIO	3	0		DVDD18_IORM	OFF	I
		DMIC1_DAT_R	DI	4					
		CMVREF1	DO	5					
		CLKM1	DO	6					
		GPIO9	DIO	0					
		TP_GPIO1_AO	DIO	1					
		SPIM3_MOSI	DIO	2					
GPIO09	V4	TDMIN_LRCK	DIO	3	0		DVDD18_IORM	OFF	I
		DMIC2_CLK	DO	4					
		CMFLASH0	DO	5					
		PWM_0	DO	6					
		GPIO10	DIO	0					
		TP_GPIO2_AO	DIO	1					
		SPIM3_MISO	DIO	2]				
GPIO10	V5	TDMIN_DI	DI	3	0		DVDD18_IORM	OFF	I
		DMIC2_DAT	DI	4]				
		CMFLASH1	DO	5					
		PWM_1	DO	6]				

© 2023 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO11	DIO	0					
		TP_GPIO3_AO	DIO	1					
GPIO11	W8	SPDIF_OUT	DO	2	0		DVDD18_IORM	OFF	
GPIOII	vvo	I2SO1_D0	DO	3	0			UFF	I
		DMIC2_DAT_R	DI	4					
		CMVREF6	DO	6					
		GPIO12	DIO	0					
GPIO12	R31	TP_GPIO4_AO	DIO	1	0		DVDD18_IOLT	OFF	1
GPIOIZ	KST	SPIM4_CSB	DO	2	0			UFF	I
		HDMITX20_HTPLG	DI	7					
		GPIO13	DIO	0					
GPIO13	Т30	TP_GPIO5_AO	DIO	1	0		DVDD18_IOLT	OFF	1
GPIOIS	150	SPIM4_CLK	DO	2	0				I
		HDMITX20_CEC	DIO	7					
		GPIO14	DIO	0					
GPIO14	T31	TP_GPIO6_AO	DIO	1	0			OFF	
GP1014	131	SPIM4_MOSI	DIO	2	0		DVDD18_IOLT	UFF	I
		HDMITX20_SCL	DIO	7					
		GPIO15	DIO	0					
GPIO15	U32	TP_GPIO7_AO	DIO	1	0		DVDD18 IOLT	OFF	1
GPI015	032	SPIM4_MISO	DIO	2	0		DVDD18_IOLI	UFF	I
		HDMITX20_SDA	DIO	7	-				
		GPIO16	DIO	0					
CDIO1C	4022	TP_GPIO0_AO	DIO	1				055	,
GPIO16	AB32	UTXD3	DO	2	0		DVDD18_IOLM	OFF	I
		HDMITX20_PWR5V	DO	7	1				

MT8370 IoT Application Processor

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO17	DIO	0					
		TP_GPIO1_AO	DIO	1					
GPIO17	AA35	URXD3	DI	2	0			OFF	
GPI017	AASS	CMFLASH2	DO	3	0		DVDD18_IOLM	UFF	I
		EDP_TX_HPD	DI	4					
		CMVREF7	DO	6					
		GPIO18	DIO	0					
		TP_GPIO2_AO	DIO	1					
		CMFLASH0	DO	2					
CMMPDN0	G4	CMVREF4	DO	3	0		DVDD18_IORT	OFF	I
		TDMIN_MCK	DIO	4					
		UTXD1	DO	5					
		TP_UTXD1_AO	DO	6					
		GPIO19	DIO	0					
		TP_GPIO3_AO	DIO	1					
		CMFLASH1	DO	2					
CMMRST0	G3	CMVREF5	DO	3	0		DVDD18_IORT	OFF	I
		TDMIN_BCK	DIO	4					
		URXD1	DI	5					
		TP_URXD1_AO	DI	6					
		GPIO20	DIO	0					
		TP_GPIO4_AO	DIO	1					
		CMFLASH2	DO	2					
CMMPDN1	E3	CLKM2	DO	3	0		DVDD18_IORT	OFF	Ι
		TDMIN_LRCK	DIO	4					
		URTS1	DO	5					
		TP_URTS1_AO	DO	6					

	(CC	ED	
	133	 EU	

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO21	DIO	0					
		TP_GPIO5_AO	DIO	1					
		CMFLASH3	DO	2					
CMMRST1	G5	CLKM3	DO	3	0		DVDD18_IORT	OFF	Ι
		TDMIN_DI	DI	4					
		UCTS1	DI	5					
		TP_UCTS1_AO	DI	6					
		GPIO22	DIO	0					
CMMCLK0	E4	CMMCLK0	DO	1	0		DVDD18_IORT	OFF	Ι
		TP_GPIO6_AO	DIO	5					
		GPIO23	DIO	0					
		CMMCLK1	DO	1					
CMMCLK1	E5	PWM_2	DO	3	0		DVDD18_IORT	OFF	Ι
		TP_GPIO7_AO	DIO	5					
		DP_TX_HPD	DI	6					
		GPIO24	DIO	0					
CMMCLK2	F4	CMMCLK2	DO	1	0			OFF	
CIVIIVICENZ	F4 -	PWM_3	DO	3	0		DVDD18_IORT	UFF	I
		EDP_TX_HPD	DI	6					
		GPIO25	DIO	0					
	Y9	LCM_RST	DO	1				OFF	
DSI0_LCM_RST	19	LCM1_RST	DO	2	0		DVDD18_IORM	UFF	I
		DP_TX_HPD	DI	3					
		GPIO26	DIO	0					
	AA7	DSI_TE	DI	1	1			OFF	
DSI0_DSI_TE	AA7	DSI1_TE	DI	2	0	DVDD18_IORM	UFF	I	
		EDP_TX_HPD	DI	3					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO27	DIO	0					
		LCM1_RST	DO	1					
DSI1_LCM_RST	AA11	LCM_RST	DO	2	0		DVDD18_IORM	OFF	
	AAII	DP_TX_HPD	DI	3				UFF	1
		CMVREF2	DO	4					
		PWM_2	DO	6					
		GPIO28	DIO	0					
		DSI1_TE	DI	1					
DSI1_DSI_TE	Y5	DSI_TE	DI	2	0		DVDD18_IORM	OFF	
DSIT_DSI_IE	15	EDP_TX_HPD	DI	3			DVDD18_IONNI		'
		CMVREF3	DO	4					
		PWM_3	DO	6					
		GPIO29	DIO	0			DVDD18_IORM	OFF	
DISP_PWM0	AA9	DISP_PWM0	DO	1	0				I
		DISP_PWM1	DO	2					
		GPIO30	DIO	0					
		DISP_PWM1	DO	1					
DISP_PWM1	Y11	DISP_PWM0	DO	2	0		DVDD18_IORM	OFF	I
		CMFLASH3	DO	3					
		PWM_1	DO	4					
		GPIO31	DIO	0					
		UTXD0	DO	1]				
UART0_TXD	U2	TP_UTXD1_AO	DO	2	1		DVDD18_IORM	PU	ОН
		TP_UTXD2_AO	DO	4]				
		SSPM_UTXD_AO	DO	7					

UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO32	DIO	0					
		URXD0	DI	1					
UART0_RXD	U3	TP_URXD1_AO	DI	2	1		DVDD18_IORM	PU	I
		TP_URXD2_AO	DI	4	-				
		SSPM_URXD_AO	DI	7					
		GPIO33	DIO	0					
UART1_TXD	V1	UTXD1	DO	1	0		DVDD18_IORM	OFF	1
UARTI_IND	VI	URTS2	DO	2	0			UFF	I
		TP_UTXD1_AO	DO	4					
		GPIO34	DIO	0					
	V2	URXD1	DI	1	0			OFF	1
UART1_RXD	V2	UCTS2	DI	2	0		DVDD18_IORM	UFF	I
		TP_URXD1_AO	DI	4					
		GPIO35	DIO	0					
		UTXD2	DO	1					
UART2_TXD	U4	URTS1	DO	2	0		DVDD18_IORM	OFF	I
		TP_URTS1_AO	DO	4					
		TP_UTXD2_AO	DO	5					
		GPIO36	DIO	0					
		URXD2	DI	1					
UART2_RXD	U5	UCTS1	DI	2	0		DVDD18_IORM	OFF	I
		TP_UCTS1_AO	DI	4					
		TP_URXD2_AO	DI	5					
JTMS	T6	GPIO37	DIO	0	1		DVDD18_IORM	PU	I
ЈТСК	T5	GPIO38	DIO	0	1		DVDD18_IORM	OFF	I
JTDI	T4	GPIO39	DIO	0	1		DVDD18_IORM	PU	I
JTDO	T1	GPIO40	DIO	0	1		DVDD18_IORM	OFF	OL
JTRST	T2	GPIO41	DIO	0	1		DVDD18_IORM	PU	I

© 2023 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
KPCOLO	H31	GPIO42	DIO	0	1		DVDD18_IOLT	рц	1
KPCOLU	131 -	KPCOL0	DIO	1			DVDD18_IOLI	PU	I
		GPIO43	DIO	0				PU/PD Rese PU OFF OFF	
KPCOL1	J31	KPCOL1	DIO	1	0		DVDD18_IOLT	055	
RPCOLI	121	DP_TX_HPD	DI	2	0		DVDD18_IOLI	UFF	I
		CMFLASH2	DO	3					
KPROWO	J30	GPIO44	DIO	0	1		DVDD18_IOLT	055	OL
KPROWU	120	KPROW0	DIO	1			DVDD18_IOLI	UFF	ΟL
		GPIO45	DIO	0					
		KPROW1	DIO	1					
KPROW1	К30	EDP_TX_HPD	DI	2	0		DVDD18_IOLT	OFF	I
		CMFLASH3	DO	3					
		I2SIN_MCK	DIO	4					
		GPIO46	DIO	0					
DPTX_HPD	AB33	DP_TX_HPD	DI	1	0		DVDD18 IOLM	055	
DPIX_HPD	ABSS	PWM_0	DO	2	0			OFF	I
		VBUSVALID_2P	DI	3					
	AA4	GPIO47	DIO	0	- 0			055	1
PCIE_WAKE_N	AA4	WAKEN	DI	1	0		DVDD18_IORM	UFF	I
PCIE_PERESET_N	AA3	GPIO48	DIO	0	0		DVDD18_IORM	055	I
FCIL_FERESEI_N	AAS	PERSTN	DO	1	0			UFF	I
	AA1	GPIO49	DIO	0	0		DVDD18_IORM	055	I
PCIE_CLKREQ_N	AAI	CLKREQN	DIO	1			ΟΛΟΟΤΟ-ΙΟΚΙΝΙ	UFF	I
		GPIO50	DIO	0					
HDMITX_PWR5V	AB34	HDMITX20_PWR5V	DO	1	0		DVDD18_IOLM	OFF	I
		IDDIG_1P	DI	3	1				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO51	DIO	0					
HDMITX_HTPLG	AC32	HDMITX20_HTPLG	DI	1	0		DVDD18_IOLM	OFF	1
	ACJZ	EDP_TX_HPD	DI	2	0		DVDD18_IOLIVI	011	1
		USB_DRVVBUS_1P	DO	3					
		GPIO52	DIO	0					
HDMITX_CEC	AC33	HDMITX20_CEC	DIO	1	0		DVDD18_IOLM	OFF	I
		VBUSVALID_1P	DI	3					
		GPIO53	DIO	0					
HDMITX_SCL	AD32	HDMITX20_SCL	DIO	1	0		DVDD18_IOLM	OFF	I
		IDDIG_2P	DI	3					
		GPIO54	DIO	0					
HDMITX_SDA	AD33	HDMITX20_SDA	DIO	1	0		DVDD18_IOLM	OFF	I
		USB_DRVVBUS_2P	DO	3					
		GPIO55	DIO	0					
SCL0	Y4	SCLO	DIO	1	1		DVDD18 IORM	DLI	1
JCLU	14	SCP_SCL0	DIO	2			DVDD18_IONNI	FU	1
		SCP_SCL1	DIO	3					
		GPIO56	DIO	0					
SDAO	W6	SDA0	DIO	1	1		DVDD18_IORM	DU	
SDAU	vv0	SCP_SDA0	DIO	2				PU	1
		SCP_SDA1	DIO	3					
SCL1	M36	GPIO57	DIO	0	1		DVDD18_IOLT	DLI	
JULI	10120	SCL1	DIO	1			DADDTO ^T IOFI	FU	I
SDA1	L36	GPIO58	DIO	0	1		DVDD18_IOLT	DLI	
JUAI	LOU	SDA1	DIO	1			DADDI9 ¹⁰ 1011	FU	I

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO59	DIO	0					
SCL2	Y2	SCL2	DIO	1	1		DVDD18_IORM	PU	I
SCLZ	12	SCP_SCL0	DIO	2				FU	I
		SCP_SCL1	DIO	3					
		GPIO60	DIO	0					
SDA2	AA2	SDA2	DIO	1	1		DVDD18_IORM	PU	I
JUAZ	7.72	SCP_SDA0	DIO	2				FU	I
		SCP_SDA1	DIO	3					
		GPIO61	DIO	0					
SCL3	W2	SCL3	DIO	1	1		DVDD18_IORM	PU	I
JCLJ	VVZ	SCP_SCL0	DIO	2				FU	I
		SCP_SCL1	DIO	3					
		GPIO62	DIO	0					
SDA3	W1	SDA3	DIO	1	1		DVDD18_IORM	PU	I
JUAJ	VV1	SCP_SDA0	DIO	2				FU	I
		SCP_SDA1	DIO	3					
SCL4	K36	GPIO63	DIO	0	1		DVDD18_IOLT	PU	I
JCL4	130	SCL4	DIO	1	±		DVDD10_IOLI	10	I
SDA4	K37	GPIO64	DIO	0	1		DVDD18_IOLT	PU	I
3DA4	K37	SDA4	DIO	1	±		DVDD18_IOLI	FU	I
		GPIO65	DIO	0					
SCL5	F5	SCL5	DIO	1	1		DVDD18_IORT	PU	I
SCLS	гJ	SCP_SCL0	DIO	2			DVDD18_IOKI	FU	I
		SCP_SCL1	DIO	3					
		GPIO66	DIO	0					
SDA5	F6	SDA5	DIO	1	1		DVDD18_IORT	PU	I
JUNJ	1-0	SCP_SDA0	DIO	2	1			FU	·
		SCP_SDA1	DIO	3					

© 2023 MediaTek Inc. All rights reserved.

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO67	DIO	0					
SCL6	Н7	SCL6	DIO	1	1		DVDD18_IORT	PU	
3010		SCP_SCL0	DIO	2			DVDD18_IOKI	FU	I
		SCP_SCL1	DIO	3					
		GPIO68	DIO	0					
SDA6	G6	SDA6	DIO	1	1		DVDD18_IORT	PU	1
3040	00	SCP_SDA0	DIO	2			DVDD10_IOI(I	10	I
		SCP_SDA1	DIO	3					
		GPIO69	DIO	0					
		SPIM0_CSB	DO	1					
SPIM0_CSB	V6	SCP_SPI0_CS	DO	2	0		DVDD18_IORM	OFF	Ι
		DMIC3_CLK	DO	3					
		CMVREF0	DO	5					
		GPIO70	DIO	0					
		SPIM0_CLK	DO	1					
SPIM0_CLK	T11	SCP_SPI0_CK	DO	2	0		DVDD18_IORM	OFF	Ι
		DMIC3_DAT	DI	3					
		CMVREF1	DO	5					
		GPIO71	DIO	0					
		SPIM0_MOSI	DIO	1					
SPIM0_MOSI	V7	SCP_SPI0_MO	DO	2	0		DVDD18_IORM	OFF	Ι
		DMIC3_DAT_R	DI	3					
		CMVREF2	DO	5					
		GPIO72	DIO	0					
		SPIM0_MISO	DIO	1	0				
SPIM0_MISO	V8	SCP_SPI0_MI	DI	2			DVDD18_IORM	OFF	Ι
		DMIC4_CLK	DO	3					
		CMVREF3	DO	5					

© 2023 MediaTek Inc. All rights reserved.

MT8370 IoT Application Processor

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO73	DIO	0					
		SPIM0_MIO2	DIO	1				PU/PD Reset OFF OFF OFF OFF OFF	
SPIM0_MIO2	U7 -	UTXD3	DO	2	0		DVDD18_IORM	055	1
5F11010_101102	07	DMIC4_DAT	DI	3	0		DVDD18_IONW	UT	1
		CLKM0	DO	4					
		CMVREF4	DO	5					
		GPIO74	DIO	0					
		SPIM0_MIO3	DIO	1					
SPIM0_MIO3	U8 -	URXD3	DI	2	0		DVDD18_IORM	OFF	I
51 11/10_11/105	00	DMIC4_DAT_R	DI	3	Ŭ			011	
		CLKM1	DO	4					
		CMVREF5	DO	5					
		GPIO75	DIO	0				OFF	
		SPIM1_CSB	DO	1					
SPIM1_CSB	Т9	SCP_SPI1_A_CS	DO	2	0		DVDD18_IORM		I
51 11/11_050		TDMIN_MCK	DIO	3	Ŭ		DVDD10_IONN	OIT	I
		SCP_SCL0	DIO	4					
		CMVREF6	DO	5					
		GPIO76	DIO	0					
		SPIM1_CLK	DO	1					
SPIM1_CLK	T10	SCP_SPI1_A_CK	DO	2	0		DVDD18_IORM	OFF	1
		TDMIN_BCK	DIO	3			DADDIO"IOUM		ı
		SCP_SDA0	DIO	4					
		CMVREF7	DO	5					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO77	DIO	0					
		SPIM1_MOSI	DIO	1					
SPIM1_MOSI	Т8	SCP_SPI1_A_MO	DO	2	0		DVDD18_IORM	OFF	I
	-	TDMIN_LRCK	DIO	3					
		SCP_SCL1	DIO	4					
		GPIO78	DIO	0					
	-	SPIM1_MISO	DIO	1					
SPIM1_MISO	T7	SCP_SPI1_A_MI	DI	2	0		DVDD18_IORM	OFF	I
	-	TDMIN_DI	DI	3					
	-	SCP_SDA1	DIO	4					
		GPIO79	DIO	0					
		SPIM2_CSB	DO	1					
	-	SCP_SPI2_CS	DO	2					
SPIM2_CSB	G2	I2SO1_MCK	DO	3	0		DVDD18_IORT	OFF	I
	-	UTXD2	DO	4					
	-	TP_UTXD2_AO	DO	5					
	-	PCM_SYNC	DIO	6					
		GPIO80	DIO	0					
		SPIM2_CLK	DO	1					
	-	SCP_SPI2_CK	DO	2					
SPIM2_CLK	G1	I2SO1_BCK	DO	3	0		DVDD18_IORT	OFF	I
		URXD2	DI	4					
		TP_URXD2_AO	DI	5					
		PCM_CLK	DIO	6					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO81	DIO	0					
		SPIM2_MOSI	DIO	1					
		SCP_SPI2_MO	DO	2					
SPIM2_MOSI	F2	12SO1_WS	DO	3	0		DVDD18_IORT	OFF	I
		URTS2	DO	4					
		TP_URTS2_AO	DO	5					
		PCM_DO	DO	6					
		GPIO82	DIO	0					
		SPIM2_MISO	DIO	1					
		SCP_SPI2_MI	DI	2					
SPIM2_MISO	E2	I2SO1_D0	DO	3	0		DVDD18_IORT	OFF	I
		UCTS2	DI	4					
		TP_UCTS2_AO	DI	5	_				
		PCM_DI	DI	6					
USB0_IDDIG	R36 -	GPIO83	DIO	0	0		DVDD18_IOLT	OFF	1
0300_10010		IDDIG	DI	1			DVDD18_IOLI		1
USB0_DRV_VBUS	P36	GPIO84	DIO	0	0		DVDD18_IOLT	OFF	1
0360_000_0003		USB_DRVVBUS	DO	1			DVDD18_IOLI		1
USB0_VBUS_VALID	P34 -	GPIO85	DIO	0	0		DVDD18_IOLT	OFF	1
0360_V603_VALID	F 34	VBUSVALID	DI	1	0		DVDD18_IOLI		1
		GPIO86	DIO	0					
		IDDIG_1P	DI	1					
		UTXD1	DO	2					
USB1_IDDIG	R34	URTS2	DO	3	0		DVDD18_IOLT	OFF	I
	I T	PWM_2	DO	4					
	Γ	TP_GPIO4_AO	DIO	5					
	<u> </u>	AUXIF_ST0	DO	6					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO87	DIO	0					
		USB_DRVVBUS_1P	DO	1					
		URXD1	DI	2					
USB1_DRV_VBUS	R33	UCTS2	DI	3	0		DVDD18_IOLT	OFF	I
		PWM_3	DO	4					
		TP_GPIO5_AO	DIO	5					
		AUXIF_CLK0	DO	6					
		GPIO88	DIO	0					
		VBUSVALID_1P	DI	1					
		UTXD2	DO	2					
USB1_VBUS_VALID	Т33	URTS1	DO	3	0		DVDD18_IOLT	OFF	I
		CLKM2	DO	4					
		TP_GPIO6_AO	DIO	5					
		AUXIF_ST1	DO	6					
		GPIO89	DIO	0					
		IDDIG_2P	DI	1					
		URXD2	DI	2					
USB2_IDDIG	P31	UCTS1	DI	3	0		DVDD18_IOLT	OFF	I
		CLKM3	DO	4					
		TP_GPIO7_AO	DIO	5					
		AUXIF_CLK1	DO	6					
		GPIO90	DIO	0					
USB2_DRV_VBUS	P32	USB_DRVVBUS_2P	DO	1	0		DVDD18_IOLT	OFF	I
		UTXD3	DO	2					
		GPIO91	DIO	0					
USB2_VBUS_VALID	R30	VBUSVALID_2P	DI	1	0		DVDD18_IOLT	OFF	I
		URXD3	DI	2					

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
PWRAP_SPI_CSN	К32	GPIO92	DIO	0	1		DVDD18_IOLT	PU	ОН
FWRAF_SFI_CSN	K3Z	PWRAP_SPI0_CSN	DO	1			DVDD18_IOLI	FU	ОП
PWRAP_SPI_CK	К31	GPIO93	DIO	0	1		DVDD18_IOLT	OFF	OL
FWIAF_JFI_CK	K31	PWRAP_SPI0_CK	DO	1			DVDD18_IOLI		01
		GPIO94	DIO	0					
PWRAP_SPI_MO	L30	PWRAP_SPI0_MO	DIO	1	1		DVDD18_IOLT	OFF	I
		PWRAP_SPI0_MI	DIO	2					
		GPIO95	DIO	0					
PWRAP_SPI_MI	L31	PWRAP_SPI0_MI	DIO	1	1		DVDD18_IOLT	OFF	I
		PWRAP_SPI0_MO	DIO	2					
PMIC_SRCLKENA0	L33	GPIO96	DIO	0	1		DVDD18_IOLT	PU	ОН
FINIC_SECREMAD	L33	SRCLKENAO	DO	1			DVDD18_IOLI	FU	ОП
PMIC_SRCLKENA1	L34	GPIO97	DIO	0	1		DVDD18_IOLT	PU	ОН
FINIC_SECREMAT	L34	SRCLKENA1	DO	1			DVDD18_IOLI	FU	ОП
SCP_VREQ_VAO	M31	GPIO98	DIO	0	0		DVDD18_IOLT	OFF	1
	WIST	SCP_VREQ_VAO	DO	1			DVDD18_IOLI		
PMIC_RTC32K_CK	N37	GPIO99	DIO	0	- 1		DVDD18_IOLT	OFF	1
FWIIC_KICSZK_CK	1137	RTC32K_CK	DI	1			DVDD18_IOLI		
PMIC_WATCHDOG	К34	GPIO100	DIO	0	1		DVDD18_IOLT	OFF	OL
PIVIIC_WATCHDOG	K34	WATCHDOG	DO	1			DVDD18_IOLI	UFF	ΟL
		GPIO101	DIO	0					
AUD_CLK_MOSI	M33	AUD_CLK_MOSI	DO	1	0		DVDD18_IOLT	055	
AUD_CLK_IVIUSI	10155	I2SO1_MCK	DO	2	0		DVDD18_IOLI	LT OFF	I
		I2SIN_BCK	DIO	3					
		GPIO102	DIO	0					
AUD SYNC MOSI M35	MOE	AUD_SYNC_MOSI	DO	1	0			055	
AUD_SYNC_MOSI	11133	I2SO1_BCK	DO	2		DVDD18_IOLT	OFF		
		I2SIN_WS	DIO	3	1				

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO103	DIO	0					
AUD_DAT_MOSI0	M34	AUD_DAT_MOSI0	DO	1	0		DVDD18_IOLT	OFF	
AUD_DAT_WOSIU	10154	12SO1_WS	DO	2	0			UFF	I
		I2SIN_D0	DI	3					
		GPIO104	DIO	0					
AUD_DAT_MOSI1	N33	AUD_DAT_MOSI1	DO	1	0		DVDD18_IOLT	OFF	1
AUD_DAT_WOSIT	1135	I2SO1_D0	DO	2			DVDD18_IOLI	UT	1
		I2SIN_D1	DI	3					
		GPIO105	DIO	0					
AUD_DAT_MISO0	M30	AUD_DAT_MISO0	DI	1	0		DVDD18_IOLT	OFF	1
AUD_DAT_WISOU	10130	VOW_DAT_MISO	DI	2			DVDD18_IOLI	UT	1
		I2SIN_D2	DI	3					
		GPIO106	DIO	0				OFF	
AUD_DAT_MISO1	M32	AUD_DAT_MISO1	DI	1	0		DVDD18_IOLT		1
AUD_DAT_WIGOT	10152	VOW_CLK_MISO	DI	2	Ŭ		DVDD10_IOLI		1
		I2SIN_D3	DI	3					
		GPIO107	DIO	0					
		I2SIN_MCK	DIO	1					
I2SIN_MCK	G36	SPLIN_MCK	DI	2	0		DVDD18_IOLT	OFF	1
	030	SPDIF_IN0	DI	3	0		DVDD18_IOLI	UT	1
		CMVREF4	DO	4					
		AUXIF_ST0	DO	5					
		GPIO108	DIO	0					
		I2SIN_BCK	DIO	1]				
I2SIN_BCK	H36	SPLIN_LRCK	DI	2				OFF	
	1150	DMIC4_CLK	DO	3	0	DVDD	DVDD18_IOLT	ULL	I
		CMVREF5	DO	4					
		AUXIF_CLK0	DO	5					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO109	DIO	0					
		I2SIN_WS	DIO	1					
I2SIN_WS	J36	SPLIN_BCK	DI	2	0		DVDD18_IOLT	OFF	
123111_003	120	DMIC4_DAT	DI	3	0		DVDD18_IOLI	UFF	1
		CMVREF6	DO	4					
		AUXIF_ST1	DO	5					
		GPIO110	DIO	0					
		I2SIN_D0	DI	1					
I2SIN_D0	J37	SPLIN_D0	DI	2	0		DVDD18_IOLT	OFF	1
123114_00	121	DMIC4_DAT_R	DI	3	0		DVDD18_IOLI	011	I
		CMVREF7	DO	4					
		AUXIF_CLK1	DO	5					
		GPIO111	DIO	0					
		I2SIN_D1	DI	1					
I2SIN_D1	G33	SPLIN_D1	DI	2	0		DVDD18_IOLT	OFF	I
		DMIC3_CLK	DO	3					
		SPDIF_OUT	DO	4					
		GPIO112	DIO	0					
		I2SIN_D2	DI	1]				
I2SIN_D2	G32	SPLIN_D2	DI	2]		DVDD18_IOLT	OFF	1
	032	DMIC3_DAT	DI	3	0		DADDIO ^{TIO} IOFI		1
		TDMIN_MCK	DIO	4					
		12SO1_WS	DO	5]				

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO113	DIO	0					
		I2SIN_D3	DI	1					
I2SIN_D3	H35	SPLIN_D3	DI	2	0		DVDD18_IOLT	OFF	I
125111_05	1155	DMIC3_DAT_R	DI	3	0		DVDD18_IOEI	OIT	I
		TDMIN_BCK	DIO	4					
		I2SO1_D0	DO	5					
		GPIO114	DIO	0					
I2SO2_MCK	H34	I2SO2_MCK	DO	1	0		DVDD18_IOLT	OFF	I
		I2SIN_MCK	DIO	2					
		GPIO115	DIO	0					
I2SO2_BCK	H33	I2SO2_BCK	DIO	1	0		DVDD18_IOLT	OFF	I
		I2SIN_BCK	DIO	2					
		GPIO116	DIO	0					
12SO2_WS	J34	I2SO2_WS	DIO	1	0		DVDD18_IOLT	OFF	I
		I2SIN_WS	DIO	2					
		GPIO117	DIO	0					
12SO2_D0	J33	12SO2_D0	DO	1	0		DVDD18_IOLT	OFF	I
		I2SIN_D0	DI	2					
		GPIO118	DIO	0					
I2SO2_D1	G31	I2SO2_D1	DO	1	0		DVDD18_IOLT	OFF	I
		I2SIN_D1	DI	2					
		GPIO119	DIO	0					
		I2SO2_D2	DO	1					
50 50251	I2SO2_D2 G30	I2SIN_D2	DI	2	0		DVDD18_IOLT	OFF	
12302_02	050	UTXD3	DO	3			DADDI9 ^{-IOFI}	UFF	I
		TDMIN_LRCK	DIO	4	<u> </u>				
		I2SO1_MCK	DO	5]				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO120	DIO	0					
		I2SO2_D3	DO	1					
I2SO2_D3	H32	I2SIN_D3	DI	2	0		DVDD18_IOLT	OFF	1
12302_03	1152	URXD3	DI	3	0		DVDD18_IOLI	OIT	
	-	TDMIN_DI	DI	4					
	-	I2SO1_BCK	DO	5					
		GPIO121	DIO	0					
	-	PCM_CLK	DIO	1					
PCM_CLK	AD30	SPIM4_CSB	DO	2	0		DVDD18_IOLM	OFF	1
T CIVI_CER	AD30	SCP_SPI1_B_CS	DO	3	0		DVDD10_IOLIVI		I
		TP_UTXD2_AO	DO	4					
		AUXIF_ST0	DO	5					
		GPIO122	DIO	0					
		PCM_SYNC	DIO	1					
PCM_SYNC	AC31	SPIM4_CLK	DO	2	0		DVDD18_IOLM	OFF	1
Tem_Sinc	ACSI	SCP_SPI1_B_CK	DO	3	0		DVDD10_IOLIVI		I
		TP_URXD2_AO	DI	4					
		AUXIF_CLK0	DO	5					
		GPIO123	DIO	0					
	-	PCM_DO	DO	1					
	VC30	SPIM4_MOSI	DIO	2	0		DVDD18_IOLM	OFF	1
	PCM_DO AC30	SCP_SPI1_B_MO	DO	3				UFF	
		TP_URTS2_AO	DO	4					
		AUXIF_ST1	DO	5]				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO124	DIO	0					
		PCM_DI	DI	1					
PCM_DI	AB31	SPIM4_MISO	DIO	2	0		DVDD18_IOLM	OFF	
PCIM_DI	ABSI	SCP_SPI1_B_MI	DI	3				UFF	I
		TP_UCTS2_AO	DI	4					
		AUXIF_CLK1	DO	5					
		GPIO125	DIO	0					
		DMIC1_CLK	DO	1					
DMIC1_CLK	N30	SPINOR_CK	DO	2	0		DVDD18_IOLT	OFF	Ι
		TDMIN_MCK	DIO	3					
		LVTS_FOUT	DO	6					
		GPIO126	DIO	0					
		DMIC1_DAT	DI	1					
DMIC1_DAT	N31	SPINOR_CS	DO	2	0		DVDD18_IOLT	OFF	Ι
		TDMIN_BCK	DIO	3					
		LVTS_SDO	DO	6					
		GPIO127	DIO	0					
		DMIC1_DAT_R	DI	1					
DMIC1_DAT_R	P30	SPINOR_IO0	DIO	2	0		DVDD18_IOLT	OFF	Ι
		TDMIN_LRCK	DIO	3					
		LVTS_26M	DI	6					
		GPIO128	DIO	0					
		DMIC2_CLK	DO	1]				
DMIC2_CLK	N34	SPINOR_IO1	DIO	2	0		DVDD18_IOLT	OFF	Ι
	T T	TDMIN_DI	DI	3	~				
	T T	LVTS_SCF	DI	6					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO129	DIO	0					
		DMIC2_DAT	DI	1					
DMIC2_DAT	P33	SPINOR_IO2	DIO	2	0		DVDD18_IOLT	OFF	I
		SPDIF_IN1	DI	3					
		LVTS_SCK	DI	6					
		GPIO130	DIO	0					
		DMIC2_DAT_R	DI	1					
DMIC2_DAT_R	P35	SPINOR_IO3	DIO	2	0		DVDD18_IOLT	OFF	I
		SPDIF_IN2	DI	3					
		LVTS_SDI	DI	6					
		GPIO131	DIO	0					
		DPI_D0	DO	1					
		GBE_TXD3	DO	2					
DPI_D0	AB9	DMIC1_CLK	DO	3	0		DVDD28_IODPI	OFF	I
		I2SO2_MCK	DO	4					
		TP_GPIO0_AO	DIO	5					
		SPIM5_CSB	DO	6					
		GPIO132	DIO	0					
		DPI_D1	DO	1					
		GBE_TXD2	DO	2					
DPI_D1	AC9	DMIC1_DAT	DI	3	0		DVDD28_IODPI	OFF	I
		I2SO2_BCK	DIO	4					
		TP_GPIO1_AO	DIO	5					
		SPIM5_CLK	DO	6	<u> </u>				

UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO133	DIO	0					- -
		DPI_D2	DO	1					
		GBE_TXD1	DO	2					
DPI_D2	AB8	DMIC1_DAT_R	DI	3	0		DVDD28_IODPI	OFF	I
		I2SO2_WS	DIO	4					
		TP_GPIO2_AO	DIO	5					
		SPIM5_MOSI	DIO	6					
		GPIO134	DIO	0					
		DPI_D3	DO	1					
		GBE_TXD0	DO	2					
DPI_D3	AC4	DMIC2_CLK	DO	3	0		DVDD28_IODPI	OFF	I
		12SO2_D0	DO	4					
		TP_GPIO3_AO	DIO	5					
		SPIM5_MISO	DIO	6					
		GPIO135	DIO	0					
		DPI_D4	DO	1					
		GBE_RXD3	DI	2					
DPI_D4	AB3	DMIC2_DAT	DI	3	0		DVDD28_IODPI	OFF	I
		I2SO2_D1	DO	4					
		TP_GPIO4_AO	DIO	5					
		WAKEN	DI	6					
		GPIO136	DIO	0					
		DPI_D5	DO	1					
		GBE_RXD2	DI	2]				
DPI_D5	AA8	DMIC2_DAT_R	DI	3	0		DVDD28_IODPI	OFF	I
		I2SO2_D2	DO	4					
		TP_GPIO5_AO	DIO	5]				
		PERSTN	DO	6]				

© 2023 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

MT8370 IoT Application Processor

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO137	DIO	0					
		DPI_D6	DO	1	-				
		GBE_RXD1	DI	2	-				
DPI_D6	AC8	DMIC3_CLK	DO	3	0		DVDD28_IODPI	OFF	
DPI_D0	ACO	I2SO2_D3	DO	4	0		DVDD28_10DP1	UFF	I
		TP_GPIO6_AO	DIO	5					
		CLKREQN	DIO	6					
		PWM_0	DO	7					
		GPIO138	DIO	0					
		DPI_D7	DO	1					
	AB7	GBE_RXD0	DI	2	0			055	
DPI_D7	AB7	DMIC3_DAT	DI	3	0		DVDD28_IODPI	OFF	I
		CLKM2	DO	4					
		TP_GPIO7_AO	DIO	5					
		GPIO139	DIO	0					
		DPI_D8	DO	1					
		GBE_TXC	DIO	2					
DPI_D8	AB6	DMIC3_DAT_R	DI	3	0		DVDD28_IODPI	OFF	Ι
		CLKM3	DO	4					
		TP_UTXD2_AO	DO	5					
		UTXD2	DO	6					
		GPIO140	DIO	0					
		DPI_D9	DO	1	1				
	 DPI_D9 AB5	GBE_RXC	DI	2	1				
DPI_D9		DMIC4_CLK	DO	3	0		DVDD28_IODPI	OFF	I
		PWM_2	DO	4					
		TP_URXD2_AO	DI	5	1				
		URXD2	DI	6	1				

© 2023 MediaTek Inc. All rights reserved.

MT8370 IOT APPLICATION PROCESSOR UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO141	DIO	0					
		DPI_D10	DO	1					
	-	GBE_RXDV	DI	2					
DPI_D10	AC5	DMIC4_DAT	DI	3	0		DVDD28_IODPI	OFF	I
		PWM_3	DO	4					
		TP_URTS2_AO	DO	5					
	-	URTS2	DO	6					
		GPIO142	DIO	0					
	-	DPI_D11	DO	1					
	-	GBE_TXEN	DO	2					
DPI_D11	AA5	DMIC4_DAT_R	DI	3	0		DVDD28_IODPI	OFF	I
		PWM_1	DO	4					
		TP_UCTS2_AO	DI	5					
		UCTS2	DI	6					
		GPIO143	DIO	0					
		DPI_D12	DO	1					
DPI_D12	AA6	GBE_MDC	DO	2	0		DVDD28_IODPI	OFF	1
011_012	~~~	CLKM0	DO	4	Ŭ		000020_10011	011	I
		SPIM3_CSB	DO	5					
		UTXD1	DO	6					
		GPIO144	DIO	0					
		DPI_D13	DO	1					
12	DPI_D13 AC6 —	GBE_MDIO	DIO	2	0		DVDD28_IODPI	OFF	
		CLKM1	DO	4				UFF	1
		SPIM3_CLK	DO	5					
		URXD1	DI	6					

MT8370 IoT Application Processor

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
DPI_D14	AC7	GPIO145	DIO	0	0		DVDD28_IODPI	OFF	1
		DPI_D14	DO	1					
		GBE_TXER	DO	2					
		CMFLASH0	DO	4					
		SPIM3_MOSI	DIO	5					
		GBE_AUX_PPS2	DIO	6					
DPI_D15	AB4	GPIO146	DIO	0	0		DVDD28_IODPI	OFF	I
		DPI_D15	DO	1					
		GBE_RXER	DI	2					
		CMFLASH1	DO	4					
		SPIM3_MISO	DIO	5					
		GBE_AUX_PPS3	DIO	6					
DPI_HSYNC	AD11	GPIO147	DIO	0	0		DVDD28_IODPI	OFF	I
		DPI_HSYNC	DO	1					
		GBE_COL	DI	2					
		I2SO1_MCK	DO	3					
		CMVREF0	DO	4					
		SPDIF_OUT	DO	5					
		URTS1	DO	6					
DPI_VSYNC	AD10	GPIO148	DIO	0	0		DVDD28_IODPI	OFF	I
		DPI_VSYNC	DO	1					
		GBE_INTR	DI	2					
		I2SO1_BCK	DO	3					
		CMVREF1	DO	4					
		SPDIF_IN0	DI	5					
		UCTS1	DI	6					
MT8370 IOT APPLICATION PROCESSOR

UNCLASSIFIED

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO149	DIO	0					
		DPI_DE	DO	1					
		GBE_AUX_PPS0	DIO	2					
DPI_DE	AB2	12SO1_WS	DO	3	0		DVDD28_IODPI	OFF	I
		CMVREF2	DO	4					
		SPDIF_IN1	DI	5					
		UTXD3	DO	6					
		GPIO150	DIO	0					
		DPI_CK	DO	1				OFF	
DPI_CK AB1		GBE_AUX_PPS1	DIO	2					
	AB1	I2SO1_D0	DO	3	0		DVDD28_IODPI		I
		CMVREF3	DO	4					
		SPDIF_IN2	DI	5					
		URXD3	DI	6					
	D37	GPIO151	DIO	0	1			PU	
EMMC_DAT7	D37	MSDC0_DAT7	DIO	1	1		DVDD18_IOEMMC	PU	I
EMMC_DAT6	E36	GPIO152	DIO	0	- 1		DVDD18_IOEMMC	PU	
EIVIIVIC_DATO	E30	MSDC0_DAT6	DIO	1			DVDD18_IOEIVIIVIC	PU	1
	F37 -	GPIO153	DIO	0	1			рц	
EMMC_DAT5	F37	MSDC0_DAT5	DIO	1	1		DVDD18_IOEMMC	PU	1
	D3E	GPIO154	DIO	0	1			рц	
EMMC_DAT4	D35 -	MSDC0_DAT4	DIO	1	1		DVDD18_IOEMMC	PU	I
	E24	GPIO155	DIO	0	1				ОН
EMMC_RSTB	E34 -	MSDC0_RSTB	DO	1	1		DVDD18_IOEMMC	C PU	UH
EMMC_CMD	F33 -	GPIO156	DIO	0	1			1C PU	I
	r33	MSDC0_CMD	DIO	1			DVDD18_IOEMMC	FU	I

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMMC_CLK	F32	GPIO157	DIO	0	1		DVDD18_IOEMMC	OFF	OL
	FJZ	MSDC0_CLK	DO	1			DVDD18_IOEIVIIVIC	UFF	OL
EMMC_DAT3	E32	GPIO158	DIO	0	1		DVDD18_IOEMMC	PU	I
LIVINC_DATS	LJZ	MSDC0_DAT3	DIO	1			DVDD18_IOEIMINC	FU	'
EMMC_DAT2	D36	GPIO159	DIO	0	1		DVDD18_IOEMMC	PU	1
	030	MSDC0_DAT2	DIO	1				10	1
EMMC_DAT1	F36	GPIO160	DIO	0	1		DVDD18_IOEMMC	PU	1
LIVINC_DATI	130	MSDC0_DAT1	DIO	1			DVDD18_IOEIMINC	FU	'
EMMC_DAT0	D33	GPIO161	DIO	0	1		DVDD18_IOEMMC	PU	I
EIVINC_DATO	033	MSDC0_DAT0	DIO	1			DVDD10_IOLININIC	FU	1
EMMC_DSL	E35	GPIO162	DIO	0	1		DVDD18_IOEMMC	OFF	I
	235	MSDC0_DSL	DI	1					1
		GPIO163	DIO	0					
MSDC1_CMD	D3	MSDC1_CMD	DIO	1	0		DVDD28_MSDC1	OFF	I
		SPDIF_OUT	DO	2					
		GPIO164	DIO	0	0	DVDD28_MSDC1			
MSDC1_CLK	D4	MSDC1_CLK	DO	1			OFF	I	
		SPDIF_IN0	DI	2					
		GPIO165	DIO	0					
MSDC1_DAT0	D2	MSDC1_DAT0	DIO	1	0		DVDD28_MSDC1	OFF	I
		SPDIF_IN1	DI	2					
		GPIO166	DIO	0					
MSDC1_DAT1	D1	MSDC1_DAT1	DIO	1	0		DVDD28_MSDC1	OFF	I
		SPDIF_IN2	DI	2	1				
		GPIO167	DIO	0					
MSDC1_DAT2	C4	MSDC1_DAT2	DIO	1	0		DVDD28_MSDC1		I
		PWM_0	DO	2	1				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
		GPIO168	DIO	0					
	C3	MSDC1_DAT3	DIO	1	0			OFF	
MSDC1_DAT3	63	PWM_1	DO	2			DVDD28_MSDC1	UFF	1
		CLKM0	DO	3					
		GPIO169	DIO	0					
MSDC2_CMD	AC35	MSDC2_CMD	DIO	1	0		DVDD28_MSDC2	OFF	
IVISDC2_CIVID	ACSS	LVTS_FOUT	DO	2				UFF	1
		TDMIN_MCK	DIO	6					
		GPIO170	DIO	0					
MSDC2_CLK	AD35	MSDC2_CLK	DO	1	0		DVDD28_MSDC2	OFF	
WISDCZ_CLK	AD55	LVTS_SDO	DO	2	0		DVDD28_IVISDC2	UFF	1
		TDMIN_BCK	DIO	6					
		GPIO171	DIO	0					
MSDC2_DAT0	AD37	MSDC2_DAT0	DIO	1	0		DVDD28_MSDC2	OFF	
MISDCZ_DATO	AU31	LVTS_26M	DI	2	-		DVDD28_IVI3DC2	UFF	1
		TDMIN_LRCK	DIO	6					
		GPIO172	DIO	0					
MSDC2_DAT1	AD36	MSDC2_DAT1	DIO	1	0			OFF	
WISDCZ_DAT1	ADSO	LVTS_SCF	DI	2			DVDD28_MSDC2	UFF	1
		TDMIN_DI	DI	6					
		GPIO173	DIO	0					
MSDC2_DAT2	AB37	MSDC2_DAT2	DIO	1	0		DVDD28_MSDC2	OFF	I
		LVTS_SCK	DI	2					
		GPIO174	DIO	0					
MSDC2_DAT3	AB35	MSDC2_DAT3	DIO	1	0		DVDD28_MSDC2	OFF	Ι
		LVTS_SDI	DI	2	-		_		
SPMI_M_SCL	K33	GPIO175	DIO	0	1		DVDD18_IOLT	OFF	OL
SFIVIL_IVI_SCL	627	SPMI_M_SCL	DIO	1			00010_1011		0L

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
	Kar	GPIO176	DIO	0	1			0.55	
SPMI_M_SDA	K35	SPMI_M_SDA	DIO	1	1		DVDD18_IOLT	OFF	I
SYSRSTB	T32	SYSRSTB	DI				DVDD18_IOLT		
TESTMODE	T34	TESTMODE	DI				DVDD18_IOLT		
X26M_IN	AE34	X26M_IN	AI				AVDD12_CKSQ		
EMI0_CA0	AT22	EMI0_CA0	DO			DDRIO	AVDDQ_EMI		
EMI0_CA1	AR22	EMI0_CA1	DO			DDRIO	AVDDQ_EMI		
EMI0_CA2	AM23	EMI0_CA2	DO			DDRIO	AVDDQ_EMI		
EMI0_CA3	AM22	EMI0_CA3	DO			DDRIO	AVDDQ_EMI		
EMI0_CA4	AN21	EMI0_CA4	DO			DDRIO	AVDDQ_EMI		
EMI0_CA5	AP21	EMI0_CA5	DO			DDRIO	AVDDQ_EMI		
EMI0_CK_C	AL20	EMI0_CK_C	DO			DDRIO	AVDDQ_EMI		
EMI0_CK_T	AM20	EMI0_CK_T	DO			DDRIO	AVDDQ_EMI		
EMI0_CKE0	AU20	EMI0_CKE0	DO			DDRIO	AVDDQ_EMI		
EMI0_CKE1	AT20	EMI0_CKE1	DO			DDRIO	AVDDQ_EMI		
EMI0_CS0	AR20	EMI0_CS0	DO			DDRIO	AVDDQ_EMI		
EMI0_CS1	AU22	EMI0_CS1	DO			DDRIO	AVDDQ_EMI		
EMI0_DMI0	AU25	EMI0_DMI0	DIO			DDRIO	AVDDQ_EMI		
EMI0_DMI1	AU31	EMI0_DMI1	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ0	AU27	EMI0_DQ0	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ1	AT26	EMI0_DQ1	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ10	AP30	EMI0_DQ10	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ11	AN29	EMI0_DQ11	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ12	AR29	EMI0_DQ12	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ13	AP31	EMI0_DQ13	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ14	AT30	EMI0_DQ14	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ15	AU29	EMI0_DQ15	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ2	AL25	EMI0_DQ2	DIO			DDRIO	AVDDQ_EMI		

ΝΕΟΙΛΤΕΚ	
	/

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMI0_DQ3	AP25	EMI0_DQ3	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ4	AL24	EMI0_DQ4	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ5	AN25	EMI0_DQ5	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ6	AT24	EMI0_DQ6	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ7	AT28	EMI0_DQ7	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ8	AU34	EMI0_DQ8	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQ9	AN31	EMI0_DQ9	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQS0_C	AN27	EMI0_DQS0_C	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQS0_T	AM27	EMI0_DQS0_T	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQS1_C	AR32	EMI0_DQS1_C	DIO			DDRIO	AVDDQ_EMI		
EMI0_DQS1_T	AT32	EMI0_DQS1_T	DIO			DDRIO	AVDDQ_EMI		
EMI0_EXTR	AT2	EMI0_EXTR	AIO			DDRIO	AVDDQ_EMI		
EMI0_RESET_N	AU35	EMI0_RESET_N	DO			DDRIO	AVDDQ_EMI		
EMI0_TP	AR3	EMI0_TP	AIO			DDRIO	AVDDQ_EMI		
EMI1_CA0	AT16	EMI1_CA0	DO			DDRIO	AVDDQ_EMI		
EMI1_CA1	AR16	EMI1_CA1	DO			DDRIO	AVDDQ_EMI		
EMI1_CA2	AL15	EMI1_CA2	DO			DDRIO	AVDDQ_EMI		
EMI1_CA3	AP16	EMI1_CA3	DO			DDRIO	AVDDQ_EMI		
EMI1_CA4	AN16	EMI1_CA4	DO			DDRIO	AVDDQ_EMI		
EMI1_CA5	AL16	EMI1_CA5	DO			DDRIO	AVDDQ_EMI		
EMI1_CK_C	AL18	EMI1_CK_C	DO			DDRIO	AVDDQ_EMI		
EMI1_CK_T	AM18	EMI1_CK_T	DO			DDRIO	AVDDQ_EMI		
EMI1_CKE0	AU18	EMI1_CKE0	DO			DDRIO	AVDDQ_EMI		
EMI1_CKE1	AT18	EMI1_CKE1	DO			DDRIO	AVDDQ_EMI		
EMI1_CS0	AR18	EMI1_CS0	DO			DDRIO	AVDDQ_EMI		
EMI1_CS1	AU16	EMI1_CS1	DO			DDRIO	AVDDQ_EMI		
EMI1_DMI0	AU13	EMI1_DMI0	DIO			DDRIO	AVDDQ_EMI		
EMI1_DMI1	AU7	EMI1_DMI1	DIO			DDRIO	AVDDQ_EMI		

ΝΕΟΙΛΤΕΚ	
	/

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMI1_DQ0	AU11	EMI1_DQ0	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ1	AT12	EMI1_DQ1	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ10	AN8	EMI1_DQ10	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ11	AR9	EMI1_DQ11	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ12	AN9	EMI1_DQ12	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ13	AR6	EMI1_DQ13	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ14	AT8	EMI1_DQ14	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ15	AU9	EMI1_DQ15	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ2	AR11	EMI1_DQ2	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ3	AN13	EMI1_DQ3	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ4	AL13	EMI1_DQ4	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ5	AP13	EMI1_DQ5	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ6	AT14	EMI1_DQ6	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ7	AT10	EMI1_DQ7	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ8	AR4	EMI1_DQ8	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQ9	AU4	EMI1_DQ9	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQS0_C	AM11	EMI1_DQS0_C	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQS0_T	AN11	EMI1_DQS0_T	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQS1_C	AT5	EMI1_DQS1_C	DIO			DDRIO	AVDDQ_EMI		
EMI1_DQS1_T	AU5	EMI1_DQS1_T	DIO			DDRIO	AVDDQ_EMI		
EMI2_CA0	B16	EMI2_CA0	DO			DDRIO	AVDDQ_EMI		
EMI2_CA1	C16	EMI2_CA1	DO			DDRIO	AVDDQ_EMI		
EMI2_CA2	F15	EMI2_CA2	DO			DDRIO	AVDDQ_EMI		
EMI2_CA3	F16	EMI2_CA3	DO			DDRIO	AVDDQ_EMI		
EMI2_CA4	E17	EMI2_CA4	DO			DDRIO	AVDDQ_EMI		
EMI2_CA5	D17	EMI2_CA5	DO			DDRIO	AVDDQ_EMI		
EMI2_CK_C	G18	EMI2_CK_C	DO			DDRIO	AVDDQ_EMI		
EMI2_CK_T	F18	EMI2_CK_T	DO			DDRIO	AVDDQ_EMI		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMI2_CKE0	A18	EMI2_CKE0	DO			DDRIO	AVDDQ_EMI		
EMI2_CKE1	B18	EMI2_CKE1	DO			DDRIO	AVDDQ_EMI		
EMI2_CS0	C18	EMI2_CS0	DO			DDRIO	AVDDQ_EMI		
EMI2_CS1	A16	EMI2_CS1	DO			DDRIO	AVDDQ_EMI		
EMI2_DMI0	A13	EMI2_DMI0	DIO			DDRIO	AVDDQ_EMI		
EMI2_DMI1	A7	EMI2_DMI1	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ0	A11	EMI2_DQ0	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ1	B12	EMI2_DQ1	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ10	D8	EMI2_DQ10	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ11	E9	EMI2_DQ11	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ12	C9	EMI2_DQ12	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ13	D7	EMI2_DQ13	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ14	B8	EMI2_DQ14	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ15	A9	EMI2_DQ15	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ2	G13	EMI2_DQ2	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ3	D13	EMI2_DQ3	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ4	G14	EMI2_DQ4	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ5	E13	EMI2_DQ5	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ6	B14	EMI2_DQ6	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ7	B10	EMI2_DQ7	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ8	A4	EMI2_DQ8	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQ9	E7	EMI2_DQ9	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQS0_C	E11	EMI2_DQS0_C	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQS0_T	F11	EMI2_DQS0_T	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQS1_C	C6	EMI2_DQS1_C	DIO			DDRIO	AVDDQ_EMI		
EMI2_DQS1_T	B6	EMI2_DQS1_T	DIO			DDRIO	AVDDQ_EMI		
EMI2_EXTR	B2	EMI2_EXTR	AIO			DDRIO	AVDDQ_EMI		
EMI2_RESET_N	B36	EMI2_RESET_N	DO			DDRIO	AVDDQ_EMI		

мерілтек	

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMI2_TP	A3	EMI2_TP	AIO			DDRIO	AVDDQ_EMI		
EMI3_CA0	B22	EMI3_CA0	DO			DDRIO	AVDDQ_EMI		
EMI3_CA1	C22	EMI3_CA1	DO			DDRIO	AVDDQ_EMI		
EMI3_CA2	G23	EMI3_CA2	DO			DDRIO	AVDDQ_EMI		
EMI3_CA3	D22	EMI3_CA3	DO			DDRIO	AVDDQ_EMI		
EMI3_CA4	E22	EMI3_CA4	DO			DDRIO	AVDDQ_EMI		
EMI3_CA5	G22	EMI3_CA5	DO			DDRIO	AVDDQ_EMI		
EMI3_CK_C	G20	EMI3_CK_C	DO			DDRIO	AVDDQ_EMI		
EMI3_CK_T	F20	EMI3_CK_T	DO			DDRIO	AVDDQ_EMI		
EMI3_CKE0	A20	EMI3_CKE0	DO			DDRIO	AVDDQ_EMI		
EMI3_CKE1	B20	EMI3_CKE1	DO			DDRIO	AVDDQ_EMI		
EMI3_CS0	C20	EMI3_CS0	DO			DDRIO	AVDDQ_EMI		
EMI3_CS1	A22	EMI3_CS1	DO			DDRIO	AVDDQ_EMI		
EMI3_DMI0	A25	EMI3_DMI0	DIO			DDRIO	AVDDQ_EMI		
EMI3_DMI1	A31	EMI3_DMI1	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ0	A27	EMI3_DQ0	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ1	B26	EMI3_DQ1	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ10	E30	EMI3_DQ10	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ11	C29	EMI3_DQ11	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ12	E29	EMI3_DQ12	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ13	C32	EMI3_DQ13	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ14	B30	EMI3_DQ14	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ15	A29	EMI3_DQ15	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ2	C27	EMI3_DQ2	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ3	E25	EMI3_DQ3	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ4	G25	EMI3_DQ4	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ5	D25	EMI3_DQ5	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ6	B24	EMI3_DQ6	DIO			DDRIO	AVDDQ_EMI		

MEDIATEK	
	/

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
EMI3_DQ7	B28	EMI3_DQ7	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ8	C34	EMI3_DQ8	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQ9	A34	EMI3_DQ9	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQS0_C	F27	EMI3_DQS0_C	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQS0_T	E27	EMI3_DQS0_T	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQS1_C	B33	EMI3_DQS1_C	DIO			DDRIO	AVDDQ_EMI		
EMI3_DQS1_T	A33	EMI3_DQS1_T	DIO			DDRIO	AVDDQ_EMI		
DSI0_CKN_T1C	AH7	DSI0_CKN_T1C	AIO				AVDD12_DSI		
DSI0_CKP_T1B	AH6	DSI0_CKP_T1B	AIO				AVDD12_DSI		
DSI0_D0N_T1A	AH5	DSI0_DON_T1A	AIO				AVDD12_DSI		
DSI0_D0P_T0C	AG5	DSI0_D0P_T0C	AIO				AVDD12_DSI		
DSI0_D1N_T2B	AH3	DSI0_D1N_T2B	AIO				AVDD12_DSI		
DSI0_D1P_T2A	AH4	DSI0_D1P_T2A	AIO				AVDD12_DSI		
DSI0_D2N_T0B	AG6	DSI0_D2N_T0B	AIO				AVDD12_DSI		
DSI0_D2P_T0A	AG7	DSI0_D2P_T0A	AIO				AVDD12_DSI		
DSI0_D3N	AH2	DSI0_D3N	AIO				AVDD12_DSI		
DSI0_D3P_T2C	AJ3	DSI0_D3P_T2C	AIO				AVDD12_DSI		
DSI1_CKN_T1C	AK6	DSI1_CKN_T1C	AIO				AVDD12_DSI		
DSI1_CKP_T1B	AK7	DSI1_CKP_T1B	AIO				AVDD12_DSI		
DSI1_D0N_T1A	AK5	DSI1_DON_T1A	AIO				AVDD12_DSI		
DSI1_D0P_T0C	AL5	DSI1_DOP_TOC	AIO				AVDD12_DSI		
DSI1_D1N_T2B	AL6	DSI1_D1N_T2B	AIO				AVDD12_DSI		
DSI1_D1P_T2A	AL7	DSI1_D1P_T2A	AIO				AVDD12_DSI		
DSI1_D2N_T0B	AL4	DSI1_D2N_T0B	AIO				AVDD12_DSI		
DSI1_D2P_T0A	AL3	DSI1_D2P_T0A	AIO				AVDD12_DSI		
DSI1_D3N	AK8	DSI1_D3N	AIO				AVDD12_DSI		
DSI1_D3P_T2C	AL8	DSI1_D3P_T2C	AIO				AVDD12_DSI		
CSIOA_LON_TOB	N3	CSIOA_LON_TOB	AIO				AVDD12_CSI		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
CSIOA_LOP_TOA	N2	CSIOA_LOP_TOA	AIO				AVDD12_CSI		
CSIOA_L1N_T1A	N5	CSIOA_L1N_T1A	AIO				AVDD12_CSI		
CSIOA_L1P_T0C	N4	CSIOA_L1P_TOC	AIO				AVDD12_CSI		
CSIOA_L2N_T1C	N6	CSIOA_L2N_T1C	AIO				AVDD12_CSI		
CSIOA_L2P_T1B	M6	CSIOA_L2P_T1B	AIO				AVDD12_CSI		
CSIOB_LON_TOB	P1	CSIOB_LON_TOB	AIO				AVDD12_CSI		
CSIOB_LOP_TOA	P2	CSIOB_LOP_TOA	AIO				AVDD12_CSI		
CSIOB_L1N_T1A	P4	CSIOB_L1N_T1A	AIO				AVDD12_CSI		
CSIOB_L1P_TOC	P3	CSIOB_L1P_TOC	AIO				AVDD12_CSI		
CSIOB_L2N_T1C	P6	CSIOB_L2N_T1C	AIO				AVDD12_CSI		
CSIOB_L2P_T1B	P5	CSIOB_L2P_T1B	AIO				AVDD12_CSI		
CSI1A_LON_TOB	J4	CSI1A_LON_TOB	AIO				AVDD12_CSI		
CSI1A_LOP_TOA	J5	CSI1A_LOP_TOA	AIO				AVDD12_CSI		
CSI1A_L1N_T1A	J3	CSI1A_L1N_T1A	AIO				AVDD12_CSI		
CSI1A_L1P_T0C	J2	CSI1A_L1P_T0C	AIO				AVDD12_CSI		
CSI1A_L2N_T1C	К6	CSI1A_L2N_T1C	AIO				AVDD12_CSI		
CSI1A_L2P_T1B	К7	CSI1A_L2P_T1B	AIO				AVDD12_CSI		
CSI1B_LON_TOB	КЗ	CSI1B_LON_TOB	AIO				AVDD12_CSI		
CSI1B_LOP_TOA	К5	CSI1B_LOP_TOA	AIO				AVDD12_CSI		
CSI1B_L1N_T1A	L4	CSI1B_L1N_T1A	AIO				AVDD12_CSI		
CSI1B_L1P_T0C	L3	CSI1B_L1P_TOC	AIO				AVDD12_CSI		
SSUSB_RXN	W36	SSUSB_RXN	AI				AVDD12_SSUSB		
SSUSB_RXP	W37	SSUSB_RXP	AI				AVDD12_SSUSB		
SSUSB_TXN	Y34	SSUSB_TXN	AO				AVDD12_SSUSB		
SSUSB_TXP	Y33	SSUSB_TXP	AO				AVDD12_SSUSB		
PCIE_CKN	AN3	PCIE_CKN	AIO				AVDD12_PCIE		
PCIE_CKP	AN4	PCIE_CKP	AIO				AVDD12_PCIE		
PCIE_LNO_RXN	AP1	PCIE_LN0_RXN	AIO				AVDD12_PCIE		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
PCIE_LN0_RXP	AP2	PCIE_LN0_RXP	AIO				AVDD12_PCIE		
PCIE_LN0_TXN	AM2	PCIE_LN0_TXN	AIO				AVDD12_PCIE		
PCIE_LN0_TXP	AM1	PCIE_LN0_TXP	AIO				AVDD12_PCIE		
DP_LN0_TXN	AH35	DP_LN0_TXN	AIO				AVDD12_DPTX		
DP_LN0_TXP	AG35	DP_LN0_TXP	AIO				AVDD12_DPTX		
DP_LN1_TXN	AH31	DP_LN1_TXN	AIO				AVDD12_DPTX		
DP_LN1_TXP	AH32	DP_LN1_TXP	AIO				AVDD12_DPTX		
DP_LN2_TXN	AJ33	DP_LN2_TXN	AIO				AVDD12_DPTX		
DP_LN2_TXP	AJ34	DP_LN2_TXP	AIO				AVDD12_DPTX		
DP_LN3_TXN	AK31	DP_LN3_TXN	AIO				AVDD12_DPTX		
DP_LN3_TXP	AK32	DP_LN3_TXP	AIO				AVDD12_DPTX		
DPAUXN	AJ37	DPAUXN	AIO				AVDD12_DPTX		
DPAUXP	AJ36	DPAUXP	AIO				AVDD12_DPTX		
EDP_LN0_TXN	AG29	EDP_LN0_TXN	AIO				AVDD12_EDPTX		
EDP_LN0_TXP	AG30	EDP_LN0_TXP	AIO				AVDD12_EDPTX		
EDP_LN1_TXN	AF31	EDP_LN1_TXN	AIO				AVDD12_EDPTX		
EDP_LN1_TXP	AF32	EDP_LN1_TXP	AIO				AVDD12_EDPTX		
EDPAUXN	AF37	EDPAUXN	AIO				AVDD12_EDPTX		
EDPAUXP	AF36	EDPAUXP	AIO				AVDD12_EDPTX		
USB_DM_P0	W31	USB_DM_P0	AIO				AVDD33_USB_P0		
USB_DM_P1	U36	USB_DM_P1	AIO				AVDD33_USB_P1		
USB_DM_P2	V35	USB_DM_P2	AIO				AVDD33_USB_P2		
USB_DP_P0	W32	USB_DP_P0	AIO				AVDD33_USB_P0		
USB_DP_P1	U37	USB_DP_P1	AIO				AVDD33_USB_P1		
USB_DP_P2	V34	USB_DP_P2	AIO				AVDD33_USB_P2		
AUXINO	AE6	AUXIN0	AIO				AVDD18_AUXADC		
AUXIN1	AF2	AUXIN1	AIO				AVDD18_AUXADC		
AUXIN2	AE3	AUXIN2	AIO				AVDD18_AUXADC		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Buffer Type	Power Domain	PU/PD Reset	IO Reset
AUXIN3	AE2	AUXIN3	AIO				AVDD18_AUXADC		
AUXIN4	AE4	AUXIN4	AIO				AVDD18_AUXADC		
AUXIN5	AE5	AUXIN5	AIO				AVDD18_AUXADC		
REFP	AE7	REFP	AIO				AVDD18_AUXADC		
HDMITX21_CH0_M	AN34	HDMITX21_CH0_M	AIO				AVDD18_HDMITX21		
HDMITX21_CH0_P	AN35	HDMITX21_CH0_P	AIO				AVDD18_HDMITX21		
HDMITX21_CH1_M	AM37	HDMITX21_CH1_M	AIO				AVDD18_HDMITX21		
HDMITX21_CH1_P	AM36	HDMITX21_CH1_P	AIO				AVDD18_HDMITX21		
HDMITX21_CH2_M	AL35	HDMITX21_CH2_M	AIO				AVDD18_HDMITX21		
HDMITX21_CH2_P	AK35	HDMITX21_CH2_P	AIO				AVDD18_HDMITX21		
HDMITX21_CLK_M	AR35	HDMITX21_CLK_M	AIO				AVDD18_HDMITX21		
HDMITX21_CLK_P	AR34	HDMITX21_CLK_P	AIO				AVDD18_HDMITX21		

4.3 **Power Rails**

Table 4-11 Power Rails **Ball Name Ball Location** Description Туре AVDD2 EMI0 AH15, AH17, AH19, AH21, AH23 Ρ DRAM power AVDD2 EMI2 K15, K17, K19, K21, K23 Ρ DRAM power AVDD12 AUXADC AE1 Ρ Analog power for AUXADC AVDD12 CKSQ AD28 Ρ Analog power for CKSQ AVDD12 CSI0 P8 Ρ Analog power for CSI0 AVDD12_CSI1 M9 Ρ Analog power for CSI1 AVDD12 DPTX AJ29 Ρ Analog power for DPTX AVDD12 DSI AH10 Ρ Analog power for DSI AVDD12 EDPTX AG27 Ρ Analog power for EDPTX AVDD12 EMI0 AJ14 Ρ DRAM power AVDD12 EMI2 Ρ J13 DRAM power AVDD12 HDMITX21 AL28 Ρ Analog power for HDMITX AVDD12 PCIE Ρ AJ11 Analog power for PCIE AVDD12 PLLGP1 U19 Ρ Analog power for APPLL AVDD12 PLLGP2 AC16 Ρ Analog power for APPLL AVDD12 PLLGP34 V14, W14 Ρ Analog power for APPLL AVDD12 SSUSB AC28 Ρ Analog power for SSUSB AVDD12 USB PO Ρ W29 Analog power for USB PO AVDD12_USB_P1 Y28 Ρ Analog power for USB P1 AVDD12 USB P2 Y29 Ρ Analog power for USB P2 AVDD18 APU W17 Ρ Analog power 1.8V for APU AVDD18 AUXADC AF1 Ρ Analog power 1.8V for AUXADC AVDD18 CKSQ AD29 Ρ Analog power 1.8V for CKSQ AVDD18_DPTX AH28 Ρ Analog power 1.8V for DPTX AVDD18 DSI **AE10** Ρ Analog power 1.8V for DSI AVDD18 EDPTX AG26 Ρ Analog power 1.8V for EDPTX AVDD18 EMI0 Ρ DRAM power AH25 AVDD18_EMI2 J24 Ρ DRAM power AVDD18_HDMITX21 AL29 Ρ Analog power 1.8V for HDMITX AVDD18 PCIE AH11 Ρ Analog power 1.8V for PCIE AVDD18 PLLGP1 V20 Ρ Analog power 1.8V for APPLL AVDD18 PLLGP2 Ρ AC17 Analog power 1.8V for APPLL AVDD18 PLLGP34 V13, W13 Ρ Analog power 1.8V for APPLL AVDD18 PROC L24 Ρ Analog power 1.8V for CPU AVDD18 SSUSB AC29 Ρ Analog power 1.8V for SSUSB AVDD18 USB PO W28 Ρ Analog power 1.8V for USB PO AVDD18_USB_P1 AA29 Ρ Analog power 1.8V for USB P1 AVDD18 USB P2 U28 Ρ Analog power 1.8V for USB P2 AVDD33 USB PO U33 Ρ Analog power 3.3V for USB_P0 AVDD33_USB_P1 Ρ V32 Analog power 3.3V for USB_P1

© 2023-2024 MediaTek Inc. All rights reserved.

MT8370 IOT Application Processor

Ball Name	Ball Location	Туре	Description
AVDD33_USB_P2	U29	Р	Analog power 3.3V for USB_P2
AVDD075_DRV_DSI	AE11	Р	Analog power for DSI
AVDD075_EMI0	AH14, AH24	Р	DRAM power
AVDD075_EMI2	К13, К24	Р	DRAM power
AVDDQ_EMI0	AH16, AH18, AH20, AH22, AJ15, AJ17, AJ19, AJ21, AJ23, AJ24	Р	DRAM power
AVDDQ_EMI2	J15, J17, J19, J21, J23, K14, K16, K18, K20, K22	Р	DRAM power
DVDD_ADSP	AD19, AD20, AE19, AE20, AF19, AF20	Р	Digital power input for ADSP
DVDD_APU	V16, W16, Y13, Y14, Y16, Y17, AA13, AA14, AA16, AA17, AB14, AB16	Р	Digital power input for APU
DVDD_CORE	L13, M20, N20, P15, R15, T19, U12, U13, U14, U15, U16, U17, U20, V17, V18, W19, W20, Y19, Y20, Y23, Y24, Y25, AA19, AA20, AA23, AA24, AB19, AB20, AB23, AB24, AC19, AC20, AC23, AC24, AD23, AD24, AE23, AE24, AF23, AF24, AG14	Ρ	Digital power input for Vcore
DVDD_GPU	AC14, AC15, AD13, AD14, AD15, AD16, AE13, AE14, AE15, AE16, AF14, AF15, AF16, AF17	Р	Digital power input for GPU
DVDD_MM	M14, M18, M19, N14, N15, N17, N19, P14, P17, P19, P20, R14, R17, R19, R20, T14, T15, T16, T17	Р	Digital power input for ISP
DVDD_PROC_B	K26, K27, K28, L21, L26, L27, L28, M21, M25, M26, M27, M28, N21, N22, N24, N25	Р	Digital power input for Big Core
DVDD_PROC_L	P24, R22, R25, R26, R27, T22, T25, T26, T27, T28, U22, U24, U25, U26, U27, V22, V27, W24	Р	Digital power input for Little Core
DVDD_SRAM_APU	AB13	Р	Digital power input for APU SRAM
DVDD_SRAM_CORE	Y22, AD22, AF22	Р	Digital power input for Core SRAM
DVDD_SRAM_GPU	AC13, AF13	Р	Digital power input for GPU SRAM
DVDD_SRAM_MM	M16, R13	Р	Digital power input for ISP SRAM
DVDD_SRAM_PROC_B	M22, N26	Р	Digital power input for Big Core SRAM
DVDD_SRAM_PROC_L	R21, V24	Р	Digital power input for Little Core SRAM
DVDD18_IODPI	AD1	Р	Digital power input for I/O
DVDD18_IOEMMC	C37	Р	Digital power input for I/O
DVDD18_IOLM	AD31	Р	Digital power input for I/O
DVDD18_IOLT	G37, R37	Р	Digital power input for I/O
DVDD18_IORM	AA10	Р	Digital power input for I/O
DVDD18_IORT	J11	Р	Digital power input for I/O
DVDD18_MSDC1	E1	Р	Digital power input for I/O
DVDD18_MSDC2	AB36	Р	Digital power input for I/O
DVDD18_VQPS	H27	DIO	eFuse blowing power input
DVDD28_IODPI	U9	Р	Digital power input for DPI
DVDD28_MSDC1	G7	Р	Digital power input for MSDC1
 DVDD28_MSDC2	AA36	Р	Digital power input for MSDC2
DVSS	A5, A6, A32, A35, B3, B4, B5, B7, B9, B11, B13, B15, B23, B25, B27, B29, B31, B32, B34, B35, C2, C5, C7, C8, C10, C11, C12, C13, C14, C15, C17, C19, C21, C23, C24, C25, C26, C28, C30,	G	GND

© 2023-2024 MediaTek Inc. All rights reserved.

Ball Name	Ball Location	Туре	Description
	C31, C33, C35, C36, D5, D6, D9, D10, D11, D12,		
	D14, D15, D16, D18, D20, D21, D23, D24, D26,		
	D27, D28, D29, D30, D31, D32, D34, E6, E8,		
	E10, E12, E14, E15, E16, E18, E19, E20, E21,		
	E23, E24, E26, E28, E31, E33, F7, F8, F9, F10,		
	F12, F13, F14, F17, F19, F21, F22, F24, F25,		
	F26, F28, F29, F30, F31, F34, F35, G8, G9, G10,		
	G11, G12, G15, G17, G19, G21, G24, G26, G27,		
	G28, G29, G34, G35, H4, H5, H6, H8, H9, H10,		
	H11, H12, H13, H14, H15, H16, H17, H18, H20,		
	H21, H22, H23, H24, H25, H26, H28, H29, H30,		
	J1, J6, J7, J8, J9, J10, J12, J14, J16, J18, J20, J22,		
	J25, J26, J27, J28, J29, K4, K8, K9, K10, K11,		
	K25, K29, L5, L6, L7, L8, L9, L10, L11, L23, L25,		
	L29, M4, M5, M7, M8, M10, M11, M13, M15,		
	M17, M23, M24, M29, M37, N1, N7, N10, N13,		
	N16, N18, N23, N27, N28, N29, N36, P7, P9,		
	P10, P11, P13, P16, P18, P21, P22, P23, P25,		
	P26, P27, P28, P29, R3, R4, R5, R6, R7, R8, R9,		
	R10, R11, R16, R18, R23, R24, R28, R29, T3,		
	T13, T18, T23, T24, T29, T35, T36, T37, U21,		
	U23, U30, U31, U34, U35, V12, V15, V21, V23,		
	V25, V26, V29, V30, V31, V33, V36, W12, W15,		
	W18, W21, W22, W23, W25, W30, W33, W34,		
	W35, Y15, Y18, Y21, Y27, Y30, Y31, Y32, Y35,		
	Y36, AA15, AA18, AA21, AA22, AA25, AA26,		
	AA27, AA32, AA33, AA34, AB12, AB15, AB17,		
	AB18, AB21, AB22, AB25, AB27, AB29, AB30,		
	AC12, AC18, AC21, AC22, AC25, AC27, AD2,		
	AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD12,		
	AD17, AD18, AD21, AD25, AD26, AD34, AE8,		
	AE9, AE12, AE17, AE18, AE21, AE22, AE27,		
	AE28, AE29, AE30, AE31, AE32, AE33, AE35,		
	AE36, AF3, AF4, AF5, AF6, AF7, AF8, AF9, AF10,		
	AF12, AF18, AF21, AF26, AF27, AF28, AF29,		
	AF30, AF33, AF34, AF35, AG4, AG8, AG9, AG11,		
	AG28, AG31, AG32, AG33, AG34, AH1, AH8,		
	AH9, AH12, AH29, AH30, AH33, AH34, AJ4, AJ5,		
	AJ6, AJ7, AJ8, AJ9, AJ12, AJ13, AJ16, AJ18,		
	AJ20, AJ22, AJ25, AJ26, AJ27, AJ28, AJ30, AJ31,		
	AJ32, AJ35, AK9, AK10, AK11, AK12, AK13,		
	AK14, AK15, AK16, AK17, AK18, AK20, AK21,		
	AK22, AK23, AK24, AK25, AK26, AK27, AK28,		
	AK29, AK30, AK33, AK34, AL1, AL2, AL9, AL10,		
	AL11, AL12, AL14, AL17, AL19, AL21, AL23,		
	AL26, AL27, AL31, AL32, AL33, AL34, AM3,		
	AM4, AM5, AM6, AM7, AM8, AM9, AM10,		
	AM12, AM13, AM14, AM16, AM17, AM19,		
	AM21, AM24, AM25, AM26, AM28, AM29,		
	AM30, AM31, AM32, AM33, AM34, AM35,		
	AN2, AN5, AN6, AN7, AN10, AN12, AN14,		
	AN15, AN17, AN18, AN19, AN20, AN22, AN23,		
	AN24, AN26, AN28, AN30, AN32, AN33, AP3,		
	AP4, AP5, AP6, AP7, AP8, AP9, AP10, AP11,		
	AP12, AP14, AP15, AP17, AP18, AP20, AP22,		
	AP23, AP24, AP26, AP27, AP28, AP29, AP32,		

MT8370 IOT Application Processor Unclassified

Ball Name	Ball Location	Туре	Description
	AP33, AP34, AP36, AP37, AR2, AR5, AR7, AR8,		
	AR10, AR12, AR13, AR14, AR15, AR17, AR19,		
	AR21, AR23, AR24, AR25, AR26, AR27, AR28,		
	AR30, AR31, AR33, AT3, AT4, AT6, AT7, AT9,		
	AT11, AT13, AT15, AT23, AT25, AT27, AT29,		
	AT31, AT33, AT34, AT35, AT36, AU3, AU6,		
	AU32, AU33		

4.4 Reserved and Unused Pin Handling Recommendations

MT8370 Baseband Design Notice provides specific pin handling recommendations for the case that the pins are not used.

Electrical Characteristics 5

Stresses above the values listed in Table 5-1 may cause permanent damage to the device. The recommended minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage, and frequencies based on characterization results. Exposure to absolute maximum rating conditions may affect device reliability. The operating conditions in Table 5-2 must not be exceeded in order to ensure correct operation and reliability of the device. All parameters specified in this document refer to these operating conditions, unless noted otherwise.

5.1 **Absolute Maximum Ratings**

	Table 5-1 Absolute Maximum Ratings		
Parameter	Conditions	Max.	Unit
Digital power input for A78 core	DVDD_PROC_B, DVDD_SRAM_PROC_B	1.21	V
Digital power input for A55 core	DVDD_PROC_L	0.99	V
Digital power input for A55 core	DVDD_SRAM_PROC_L	1.08	V
Digital power input for Vcore	DVDD_CORE	0.83	V
Digital power input for GPU	DVDD_GPU	0.88	V
	AVDD12_AUXADC, AVDD12_CKSQ,		
	AVDD12_CSI0, AVDD12_CSI1,		
	AVDD12_DPTX, AVDD12_DSI,		
	AVDD12_EDPTX, AVDD12_HDMITX21,		
	AVDD12_PCIE, AVDD12_PLLGP1,		
	AVDD12_PLLGP2, AVDD12_PLLGP34,	1.32	v
	AVDD12_SSUSB, AVDD12_USB_P0,		
	AVDD12_USB_P1, AVDD12_USB_P2,		
	AVDD12_EMI0, AVDD12_EMI2,		
	AVDD2_EMI0, AVDD2_EMI2,		
	AVDDQ_EMI0, AVDDQ_EMI2		
Analog power input	AVDD18_APU, AVDD18_AUXADC,		
nalog power input	AVDD18_CKSQ, AVDD18_DPTX,		
	AVDD18_DSI, AVDD18_EDPTX,		
	AVDD18_HDMITX21, AVDD18_PCIE,		
	AVDD18_PLLGP1, AVDD18_PLLGP2,	1.98	V
	AVDD18_PLLGP34, AVDD18_PROC,		
	AVDD18_SSUSB, AVDD18_USB_P0,		
	AVDD18_USB_P1, AVDD18_USB_P2,		
	AVDD18_EMI0, AVDD18_EMI2		
	AVDD33_USB_P0, AVDD33_USB_P1,	2.22	
	AVDD33_USB_P2	3.22	V
	AVDD075_EMI0, AVDD075_EMI2	0.825	V
	DVDD_ADSP, DVDD_MM,		v
S. 1. 1	DVDD_SRAM_CORE, DVDD_SRAM_MM	0.83	V
Digital power input	DVDD_APU	0.85	V
	DVDD_SRAM_APU	0.88	V

. . .

© 2023-2024 MediaTek Inc. All rights reserved.

UNCLASSIFIED

Parameter	Conditions	Max.	Unit
	DVDD_SRAM_GPU	0.94	V
	DVDD18_IODPI, DVDD18_IOEMMC,		
	DVDD18_IOLM, DVDD18_IOLT,	1.05	N
	DVDD18_IORM, DVDD18_IORT,	1.95	V
	DVDD18_MSDC1, DVDD18_MSDC2		
	DVDD28_IODPI, DVDD28_MSDC1	2.15	M
	DVDD28_MSDC2	3.15	V
Junction temperature	-	125	°C

Warning: Stressing the device beyond the absolute maximum ratings may cause permanent damage. These are stress ratings only.

5.1.1 **Storage Condition**

Table 5-2 defines storage conditions specifics.

Table 5-2 Storage Condition

Paramete	Min.	Max.	Unit	
Shelf life in sealed bag	40°C/90% RH		24	Months
After bag opened ⁽¹⁾				
Mounted	30°C/60% RH		168	h
Stored			20	% RH
Baking				
Low temperature device containers	40°C +5°C/-0°C and < 5% RH	192		h
High temperature device containers	125°C +5°C/-0°C	24		h

1. For devices subjected to infrared reflow, vapor-phase reflow, or equivalent processing.

5.2 **Recommended Operating Conditions**

Table 5-3 presents the recommended operating conditions of the device power pins.

Table 5-3 Recommended Operating Conditions for Power Supply

Pin Name	Description	Min.	Тур.	Max.	Unit
AVDD075_DRV_DSI	Analog power for DRV_DSI	0.7125	0.75	0.7875	V
AVDD12_AUXADC	Analog power for AUXADC	1.14	1.2	1.26	V
AVDD12_CKSQ	Analog power for CKSQ	1.14	1.2	1.26	V
AVDD12_CSI0	Analog power for CSI0	1.14	1.2	1.26	V
AVDD12_CSI1	Analog power for CSI1	1.14	1.2	1.26	V
AVDD12_DPTX	Analog power for DPTX	1.14	1.2	1.26	V
AVDD12_DSI	Analog power for DSI	1.14	1.2	1.26	V
AVDD12_EDPTX	Analog power for EDPTX	1.14	1.2	1.26	V
AVDD12_HDMITX21	Analog power for HDMITX21	1.14	1.2	1.26	V
AVDD12_PCIE	Analog power for PCIe	1.14	1.2	1.26	V
AVDD12_PLLGP1	Analog power for PLLGP1	1.14	1.2	1.26	V
AVDD12_PLLGP2	Analog power for PLLGP2	1.14	1.2	1.26	V

© 2023-2024 MediaTek Inc. All rights reserved.

MT8370 IOT Application Processor Unclassified

Pin Name	Description	Min.	Тур.	Max.	Unit
AVDD12_PLLGP34	Analog power for PLLGP34	1.14	1.2	1.26	V
AVDD12_SSUSB	Analog power for SSUSB	1.14	1.2	1.26	V
AVDD12_USB_P0	Analog power for USB_P0	1.14	1.2	1.26	V
AVDD12_USB_P1	Analog power for USB_P1	1.14	1.2	1.26	V
AVDD12_USB_P2	Analog power for USB_P2	1.14	1.2	1.26	V
AVDD18_APU	Analog power for APU	1.71	1.8	1.89	V
AVDD18_AUXADC	Analog power for AUXADC	1.71	1.8	1.89	V
AVDD18_CKSQ	Analog power for CKSQ	1.71	1.8	1.89	V
AVDD18_DPTX	Analog power for DPTX	1.71	1.8	1.89	V
AVDD18_DSI	Analog power for DSI	1.71	1.8	1.89	V
AVDD18_EDPTX	Analog power for EDPTX	1.71	1.8	1.89	V
AVDD18_HDMITX21	Analog power for HDMITX21	1.71	1.8	1.89	V
AVDD18_PCIE	Analog power for PCIe	1.71	1.8	1.89	V
AVDD18_PLLGP1	Analog power for PLLGP1	1.71	1.8	1.89	V
AVDD18_PLLGP2	Analog power for PLLGP2	1.71	1.8	1.89	V
AVDD18_PLLGP34	Analog power for PLLGP34	1.71	1.8	1.89	V
AVDD18_PROC	Analog power for PROC	1.71	1.8	1.89	V
AVDD18_SSUSB	Analog power for SSUSB	1.71	1.8	1.89	V
AVDD18_USB_P0	Analog power for USB Port0	1.71	1.8	1.89	V
AVDD18_USB_P1	Analog power for USB Port1	1.71	1.8	1.89	V
AVDD18_USB_P2	Analog power for USB Port2	1.71	1.8	1.89	V
AVDD33_USB_P0	Analog power for USB Port0	2.92	3.07	3.22	V
AVDD33_USB_P1	Analog power for USB Port1	2.92	3.07	3.22	V
AVDD33_USB_P2	Analog power for USB Port2	2.92	3.07	3.22	V
AVDD075_EMI0	Analog power for EMI0	0.675	0.75	0.825	V
AVDD075_EMI2	Analog power for EMI2	0.675	0.75	0.825	V
AVDD12_EMI0	Analog power for EMI0	1.08	1.2	1.32	V
AVDD12_EMI2	Analog power for EMI2	1.08	1.2	1.32	V
AVDD18_EMI0	Analog power for EMI0	1.62	1.8	1.98	V
AVDD18_EMI2	Analog power for EMI2	1.62	1.8	1.98	V
AVDD2_EMI0 (LPDDR4X)	Analog power for EMIO (LPDDR4X)	1.06	1.1	1.17	V
AVDD2_EMI0 (LPDDR4)	Analog power for EMIO (LPDDR4)	1.06	1.1	1.17	V
AVDD2_EMI2 (LPDDR4X)	Analog power for EMI2 (LPDDR4X)	1.06	1.1	1.17	V
AVDD2_EMI2 (LPDDR4)	Analog power for EMI2 (LPDDR4)	1.06	1.1	1.17	V
AVDDQ_EMI0 (LPDDR4X)	Analog power for EMI0 (LPDDR4X)	0.57	0.6	0.65	V
AVDDQ_EMI0 (LPDDR4)	Analog power for EMIO (LPDDR4)	1.06	1.1	1.17	V
AVDDQ_EMI2 (LPDDR4X)	Analog power for EMI2 (LPDDR4X)	0.57	0.6	0.65	V
AVDDQ_EMI2 (LPDDR4)	Analog power for EMI2 (LPDDR4X)	1.06	1.1	1.17	V
DVDD_ADSP	Digital power input for ADSP	0.71	0.75	0.81	V
DVDD_APU	Digital power input for APU	0.53	0.75	0.84	V
DVDD_CORE	Digital power input for Vcore	0.52	0.75	0.81	V
DVDD_GPU	Digital power input for GPU	0.55	0.75	0.86	V
DVDD_MM	Digital power input for ISP	0.52	0.75	0.81	V
DVDD_PROC_B	Digital power input for Big Core	0.52	0.75	1.19	V
DVDD_PROC_L	Digital power input for Little Core	0.52	0.75	0.97	V
DVDD_SRAM_APU	Digital power input for APU SRAM	0.71	0.75	0.86	V

© 2023-2024 MediaTek Inc. All rights reserved.

Μ	гн			
			-	

Pin Name	Description	Min.	Тур.	Max.	Unit
		0.57*			
DVDD_SRAM_CORE	M_CORE Digital power input for Core SRAM		0.75	0.81	V
DVDD_SRAM_GPU	Digital power input for GPU SRAM	0.71 0.57⁺	0.85	0.92	V
DVDD_SRAM_MM	Digital power input for ISP SRAM	0.71 0.57⁺	0.75	0.81	V
DVDD_SRAM_PROC_B Digital power input for Big Core SRAM		0.71 0.57+	0.85	1.19	V
DVDD_SRAM_PROC_L Digital power input for Little Core SRAM		0.71 0.57 ⁺	0.85	1.08	V
DVDD18_IODPI	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_IOEMMC	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_IOLM	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_IOLT	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_IORM	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_IORT	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_MSDC1	Digital power input for I/O	1.71	1.8	1.89	V
DVDD18_MSDC2	Digital power input for I/O	1.71	1.8	1.89	V
DVDD28_IODPI	Digital power input for DPI	1.71	3	3.15	V
DVDD28_MSDC1	Digital power input for MSDC1	1.71	3	3.15	V
DVDD28_MSDC2	Digital power input for MSDC2	1.71	3	3.15	V

Note: The values with "+" sign are for SRAM retention only, not for operation.

5.3 DC Electrical Specifications

This section provides DC electrical characteristics per buffer type.

5.3.1 PMIC_RTC32K_CK DC Specifications

Table 5-4 PMIC_RTC32K_CK DC Specifications

	Parameter	Min.	Тур.	Max.	Unit	
Operating	g voltage = 1.8 V					
INPUT						
VIH	Input logic high voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V	
VIL	Input logic low voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V	
F _{RTC}	Input clock frequency		32		kHz	
DC _{RTC}	Input signal duty cycle	45	50	55	%	
OUTPUT					L	
V _{OH}	DC output logic high voltage	0.75 × VDDIO ⁽¹⁾			V	
V _{OL}	DC output logic low voltage			0.25 × VDDIO ⁽¹⁾	V	

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IOLT). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.2 SPII2CUARTIO DC Electrical Specifications

Table 5-5 SPII2CUARTIO DC Specifications

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 1.8 V				
INPUT					
VIH	Input logic high voltage	0.65 × VDDIO ⁽¹⁾		VDDIO + 0.3	V
VIL	Input logic low voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V
OUTPUT					
Vон	DC output logic high voltage	0.75 × VDDIO ⁽¹⁾			V
V _{OL}	DC output logic low voltage			0.25 × VDDIO ⁽¹⁾	V

(1) VDDIO in this table stands for corresponding power supply (i.e. VDD18_IORM). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.3 I2C/I2SIO DC Specifications

Table 5-6 I2C/I2S DC Specifications

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 1.8 V				
INPUT					
VIH	Input logic high voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
VIL	Input logic low voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V
OUTPUT			1		
Vон	DC output logic high voltage	0.75 × VDDIO ⁽¹⁾			V
Vol	DC output logic low voltage			0.25 × VDDIO ⁽¹⁾	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IOLT). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.4 I3CIO DC Specifications

Table 5-7 I3CIO DC Specifications

	Parameter	Min.	Тур.	Max.	Unit
Operatin	ng voltage = 1.8 V				
INPUT					
VIH	Input logic high voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
VIL	Input logic low voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V
OUTPUT	•				•
Vol	DC output logic low voltage			0.2 × VDDIO ⁽¹⁾	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IORT). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.5 eMMCIO DC Specifications

Table 5-8 eMMCIO DC Specifications

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 1.8 V				
INPUT					
VIH	Input logic high voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
VIL	Input logic low voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V
OUTPUT	· · · · ·				
Vон	DC output logic high voltage	1.4			V
V _{OL}	DC output logic low voltage			0.45	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IOEMMC). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.6 MSDC1IO DC Specifications

Table 5-9 MSDC110 DC Specifications (2.8V/3.0V)

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 2.8V/3.0V				
INPUT					
VIH	Input logic high voltage	0.75 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
VIL	Input logic low voltage	-0.3		0.25 × VDDIO ⁽¹⁾	V
OUTPUT	I		1 1		•
Vон	DC output logic high voltage	0.625 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
Vol	DC output logic low voltage	-0.3		0.125 × VDDIO ⁽¹⁾	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD28_MSDC1). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

Table 5-10 MSDC110 DC Specifications

Parameter	Min.	Тур.	Max.	Unit
g voltage = 1.8 V				
Input logic low voltage	0.7 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
Input logic high voltage	-0.3		$0.3 \times \text{VDDIO}^{(1)}$	V
DC output logic high voltage	1.4		VDDIO ⁽¹⁾ + 0.15	V
DC output logic low voltage	-0.3		0.45	V
	g voltage = 1.8 V Input logic low voltage Input logic high voltage DC output logic high voltage	g voltage = 1.8 V Input logic low voltage 0.7 × VDDIO ⁽¹⁾ Input logic high voltage -0.3 DC output logic high voltage 1.4	g voltage = 1.8 V Input logic low voltage 0.7 × VDDIO ⁽¹⁾ Input logic high voltage -0.3 DC output logic high voltage 1.4	g voltage = 1.8 V Input logic low voltage 0.7 × VDDIO ⁽¹⁾ VDDIO ⁽¹⁾ + 0.15 Input logic high voltage -0.3 0.3 × VDDIO ⁽¹⁾ DC output logic high voltage 1.4 VDDIO ⁽¹⁾ + 0.15

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD28_MSDC1). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.3.7 MSDC2IO DC Specifications

Table 5-11 MSDC2IO DC Specifications (2.8V/3.0V)

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 2.8V/3.0V				
INPUT					
VIH	Input logic high voltage	0.75 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
VIL	Input logic low voltage	-0.3		0.25 × VDDIO ⁽¹⁾	V
OUTPUT	•	•			1
Vон	DC output logic high voltage	0.625 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
Vol	DC output logic low voltage	-0.3		0.125 × VDDIO ⁽¹⁾	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD28_MSDC2). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

Table 5-12 MSDC2IO DC

	Parameter	Min.	Тур.	Max.	Unit
Operatin	g voltage = 1.8 V				
INPUT					
VIH	Input logic high voltage	0.7 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.15	V
VIL	Input logic low voltage	-0.3		0.3 × VDDIO ⁽¹⁾	V
OUTPUT	I				
Vон	DC output logic high voltage	1.4		VDDIO ⁽¹⁾ + 0.15	V
Vol	DC output logic low voltage	-0.3		0.45	V

(1) VDDIO in this table stands for corresponding power supply (i.e. DVDD28_MSDC2). For more information on the power supply name on the corresponding ball, see Table 4-10 Pin Characteristics, *Power Domain* column.

5.4 Power Management

5.4.1 Power Sequence

Refer to PMIC datasheet for detailed timing sequence.

5.5 Reset

5.5.1 Overview

The Top Reset Generation Unit (TOPRGU) is responsible for generating and distributing reset signals to various subsystems to ensure that the system operates in a stable and reliable manner. It consists of a Watchdog Timer (WDT), which helps protect against potential system crashes by monitoring system operation and resetting it if an unexpected event occurs.

5.5.2 Features

Hardware reset signals for the whole chip

- Software controllable reset for subsystems
- Watchdog timer timeout reset
- Reset output signals for companion chips

5.5.3 Block Diagram

Figure 5-1 Block Diagram of TOPRGU

5.5.4 Function Description

TOPRGU is responsible for generating and distributing reset signals to various subsystems to ensure that the system operates in a stable and reliable manner.

In addition, enhanced features such as a watchdog timer, configurable handling mode to reset requests, and dual-mode reset event handling are provided for advanced usage.

- Watchdog timer
 - TOPRGU provides a watchdog timer that generates a timeout event when it counts down to 0.
 - Watchdog timer can be used to reset the system or raise an interrupt to the system when a timeout occurs. For detailed usage, see Section 5.5.7.1 and 5.5.7.2.
- Configurable handling mode to reset requests
 - A configurable IRQ/reset mode selection is provided for each reset request to allow advanced event handling. This
 allows reset requests to be handled as interrupts to fit application needs. See Section 5.5.7.3.
- Dual-mode reset event handling
 - Dual-mode allows the watchdog timer to trigger an IRQ first upon a reset event, followed by a watchdog reset if the watchdog timer times out again. Detailed usage can be found in Section 5.5.7.4.

5.5.5 Reset IO Signal Descriptions

Table 5-13 presents Reset signal description.

Table 5-13 Reset Signal Descriptions

Signal Name	Туре	Description	Ball Location
SYSRSTB	DI	System reset input	Т32
WATCHDOG	DO	Watchdog reset output	К34

5.5.6 Theory of Operation

The TOPRGU includes three distinct stages of operation.

- 1. **The IDLE state:** No reset event has occurred and the watchdog counter is kicked periodically.
- 2. **The IRQ state:** When a reset event occurs for the first time in the dual-mode, the TOPRGU triggers an interrupt instead of a reset. The watchdog counter automatically restarts and waits for a timeout again. For more details about the dual-mode, refer to Section 5.5.7.4.
- 3. **The Reset state:** When the watchdog counter times out again, the TOPRGU triggers a watchdog reset to reset the entire chip.

5.5.7 Programming Guide

5.5.7.1 TOPRGU Initialization

The TOPRGU is set to the dual-mode by default; however, there are two ways to change its behavior. Note that the bold text in this section indicates the corresponding register name.

- 1. Trigger PAD_ SYSRSTB to reset the **WDT_MODE** to the default value. Note that this register cannot be reset by the watchdog reset.
- 2. Program **WDT_MODE**.

5.5.7.2 Program Watchdog Timer Length

The watchdog counter is kicked periodically, with the period referred to as the "Watchdog Timer length". The configuration steps are as follows.

- 1. Set wdt_en(**WDT_MODE[0]**) to 1'b1.
- 2. Update WDT_LENGTH and trigger WDT_RESTART.

5.5.7.3 IRQ Mode

The TOPRGU is set to the dual-mode by default while all reset requests are in the IRQ mode by default. This means that the interrupt is triggered (instead of the watchdog reset) immediately. To trigger the watchdog reset but not the interrupt, the corresponding configuration of each reset request can be changed so that it is configured either as a reset or as an IRQ.

5.5.7.4 Dual-Mode Reset

The dual-mode in the TOPRGU means that an IRQ is triggered first when a reset event occurs, followed by a watchdog reset if the watchdog timer times out again.

The watchdog timer auto-restarts after an interrupt is triggered. The AP should clear the **WDT_STA** after receiving the interrupt from the TOPRGU. When the interrupt is issued, the watchdog timer is restarted to {**WDT_LENGTH**, {9{1'b1}}} and the watchdog reset is triggered when the timer expires. {**WDT_LENGTH**, {9{1'b1}}} means that the WDT timeout period is a multiple of 512*T32k = 15.6 ms.

To configure the dual-mode, perform the following steps:

- 1. Set wdt_en (**WDT_MODE[0]**) = 1'b1.
- 2. Set dual_mode (**WDT_MODE[6]**) = 1'b1.

5.5.8 Register Definition

Refer to "MT8370 Register Map" for detailed register descriptions.

5.6 DSI Specifications

Table 5-14 presents MIPI D-PHY TX electrical characteristics.

Description	Min.	Тур.	Max.	Unit	Note			
High-Speed data rate	125	-	1200	Mbps				
High-Speed common mode voltage	150	200	250	mV				
High-Speed differential output voltage	140	200	270	mV				
High-Speed single ended output high voltage	-	-	360	mV				
High-Speed single ended output impedance	40	50	62.5	Ω				
	-	-	0.3	UI	1			
High-Speed 20%-80% rise time and fall time	-	-	0.35	UI	2			
	100	-	-	ps	3			
Low-Power output high level	0.95	1.2	1.3	V				
Low-Power output low level	-50	-	50	mV				
Low-Power output impedance	110	-	-	Ω				
Low-Power 15%-85% rise time and fall time	-	-	25	ns				

Table 5-14 DSI D-PHY TX Electrical Characteristics

1. Applicable when supporting maximum HS bit rates ≤ 1 Gbps (UI ≥ 1 ns)

2. Applicable when supporting maximum HS bit rates > 1 Gbps (UI ≤ 1 ns) but less than ≤ 1.5 Gbps

3. Applicable when supporting maximum HS bit rates \leq 1.5 Gbps

Table 5-15 presents MIPI C-PHY TX electrical characteristics.

Table 5-15 DSI C-PHY TX Electrical Character	istics
--	--------

Description	Min.	Тур.	Max.	Unit	Note
High-Speed symbol rate	125	-	1100	Msps	
High-Speed common mode voltage	175	225 to 250	310	mV	
High-Speed differential output voltage of strong one	-	-	300	mV	
High-Speed differential output voltage of weak one	97	-	-	mV	
High-Speed single ended output high voltage	-	-	425	mV	
High-Speed single ended output impedance	40	50	60	Ω	
High-Speed rise time and fall time from -58mV to 58mV	-	-	0.4	UI	
Low-Power output high level	0.95	1.2	1.3	V	
Low-Power output low level	-50	-	50	mV	
Low-Power output impedance	110	-	-	Ω	
Low-Power 15%-85% rise time and fall time	-	-	25	ns	

5.7 CSI-2 Specifications

Electrical characteristics are compatible with MIPI D-PHY Specification Revision 1.2.

Table 5-16 CSI D-PHY RX Electrical Characteristics

Description	Min.	Тур.	Max.	Unit	Note
High-Speed data rate	80	-	2500	Mbps	
High-Speed common point voltage	70	-	330	mV	
High-Speed differential input high voltage	-	-	40	mV	
High-Speed differential input low voltage	-40	-	-	mV	
High-Speed single ended input high voltage	-	-	460	mV	
High-Speed single ended input low voltage	-40	-	-	mV	
High-Speed differential input impedance	80	100	125	Ω	
Low-Power logic 1 input voltage	740	-	-	mV	
Low-Power logic 0 input voltage	-	-	550	mV	
Low-Power input hysteresis	25	-	-	mV	
Minimum pulse width response	20	-	-	ns	

6 Clock Characteristics

The device has two external input clocks—low frequency (RTC32K_CK) and high frequency (X26M_IN). Figure 6-1 shows the external clock sources and clock outputs.

Figure 6-1 Device clock diagram

6.1 Maximum Performance Ratings

Table 6-1 presents the maximum core and peripheral performance limitations and correlations.

Mo	dule	Max.	Unit
Dual-core Arm Cortex-A78	A78	2000	MHz
Quad-core Arm Cortex-A55	A55	2000	MHz
Graphics Accelerator	GPU	950	MHz
HiFi 5 DSP	DSP	800	MHz
Al Processor Unit	VP6	832	MHz
	MDLA	700	MHz
System Companion Processor	SCP	832	MHz
External Memory Interface	LPDDR4(X)	3733	Mbps
Memory Card Controller	SD Card	100	MBps
	eMMC	400	MBps

Table 6-1 Maximum performance ratings

© 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited. Page 460 of 472

Module		Max.	Unit
	SDIO	100	MBps
Serial NOR Flash Interface	SNOR	52	MHz
Digital Display Parallel Interface	DPI	148	MHz
High-Definition Multimedia Interface Transmitter	HDMITX	594	MHz
DisplayPort	DPTX	5.4	Gbps/lane
Embedded DisplayPort Interface	EDPTX	5.4	Gbps/lane
	DSI D-PHY	1.5	Gbps/lane
Display Serial Interface	DSI C-PHY	1.1	Gsps/trio
Image Signal Processor	ISP	32	MPix@30fps
	CSI D-PHY	2.5	Gbps/lane
Camera Serial Interface 2	CSI C-PHY	4.5	Gsps/trio
Video Encoder	VENC	624	MHz
Video Decoder	VDEC	594	MHz
	I2S master mode (sampling frequency)	192	kHz
Inter-IC Sound	I2S slave mode (sampling frequency)	192	kHz
Programmable Command Master Interface	PCM (sampling frequency)	48	kHz
Pulse Density Modulation	PDM	3.25	MHz
Time Division Multiplexed Interface	TDM (sampling frequency)	48	kHz
Digital Interface	SPDIF	192	kHz
	I2C mode	3.4	Mbps
Inter-Integrated Circuit	I3C mode	12.5	Mbps
Universal Asynchronous Receiver/Transmitter	UART	961,200	bps
Serial Peripheral Interface	SPI master	52	MHz
· · · · · · · · · · · · · · · · · · ·	USB SuperSpeed	5	Gbps
	USB High-Speed	480	Mbps
Universal Serial Bus	USB Full-Speed	12	Mbps
	USB Low-Speed	1.5	Mbps
	MII	25	MHz
Ethernet Network Interface Controller	RMII	50	MHz
	RGMII	125	MHz
Peripheral Component Interconnect Express	PCle	8.0	GT/s
Pulse Width Modulation	PWM	39	MHz
Auxiliary ADC	AUXADC (clock rate)	3.25	MHz

6.2 PLL Spec

Table 6-2 shows ARMPLL_LL specifications.

Table 6-2 ARMPLL_LL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz

 $\hfill {\ensuremath{\mathbb C}}$ 2023-2024 MediaTek Inc. All rights reserved. Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Parameter		Min.	Тур.	Max.	Unit
Fout	Output clock frequency		2000		MHz
t _{SET}	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-3 shows ARMPLL_BL specifications.

Table 6-3 ARMPLL_BL specifications

	Parameter	Min.	Тур.	Max.	Unit
FIN	Input clock frequency		26		MHz
Fout	Output clock frequency		2000		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-4 shows CCIPLL specifications.

Table 6-4 CCIPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
FIN	Input clock frequency		26		MHz
Fout	Output clock frequency		1600		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-5 shows ETHPLL specifications.

Table 6-5 ETHPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		500		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-6 shows MSDCPLL specifications.

Table 6-6 MSDCPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		416.14648		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-7 shows TVDPLL1 specifications.

Table 6-7 TVDPLL1 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		594.177		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clк)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-8 shows TVDPLL2 specifications.

Table 6-8 TVDPLL2 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		594.177		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-9 shows MPLL specifications.

Table 6-9 MPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
F _{IN}	Input clock frequency		26		MHz
Fout	Output clock frequency		208.03		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	45	50	55	%
t _{J(CLK)}	Output clock jitter (period jitter)			100	ps

	Parameter	Min.	Тур.	Max.	Unit
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-10 shows MMPLL specifications.

Table 6-10 MMPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
F _{IN}	Input clock frequency		26		MHz
Fout	Output clock frequency		2750.048		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-11 shows MAINPLL specifications.

Table 6-11 MAINPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		2184.359		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-12 shows IMGPLL specifications.

Table 6-12 IMGPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		660		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-13 shows UNIVPLL specifications.

Table 6-13 UNIVPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz

© 2023-2024 MediaTek Inc. All rights reserved.

	Parameter	Min.	Тур.	Max.	Unit
Fout	Output clock frequency		2496.006		MHz
t _{SET}	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-14 shows ADSPPLL specifications.

Table 6-14 ADSPPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		800		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-15 shows APLL1 specifications.

Table 6-15 APLL1 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		196.001		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-16 shows APLL2 specifications.

Table 6-16 APLL2 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		196.001		MHz
tset	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	45	50	55	%
t _{J(CLK)}	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-17 shows APLL3 specifications.

Table 6-17 APLL3 specifications

	Parameter	Min.	Тур.	Max.	Unit
F _{IN}	Input clock frequency		26		MHz
Fout	Output clock frequency		196.001		MHz
tset	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-18 shows APLL4 specifications.

Table 6-18 APLL4 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		196.001		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
t _{J(CLK)}	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-19 shows APLL5 specifications.

Table 6-19 APLL5 specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		196.001		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-20 shows MFGPLL specifications.

Table 6-20 MFGPLL specifications

	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency		26		MHz
Fout	Output clock frequency		390		MHz
tset	Settling time		20		μs
Fout(d)	Output clock duty cycle	45	50	55	%
tj(clk)	Output clock jitter (period jitter)			100	ps
DVDD	Digital power supply	0.54	0.8	0.88	V

© 2023-2024 MediaTek Inc. All rights reserved.

Page 466 of 472

	Parameter	Min.	Тур.	Max.	Unit
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

6.3 Clock Squarer

The Clock Squarer (CKSQ) is designed to receive clock signal from pin "X26M_IN" and distribute it to the chip internally.

Table 6-21 shows the CKSQ specifications.

Table 6-21 CKSQ specif	fications
------------------------	-----------

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Input signal amplitude	1,000	1,200	1,250	mVpp
D _{cycIN}	Input signal duty cycle		50		%
D _{cycOUT}	Output signal duty cycle	D _{cycin} - 5		D _{cycIN} + 5	%
	Maximum positive overshoot			1.3	V
	Minimum negative overshoot	-0.1			V

6.4 Clock Signal Descriptions

Table 6-22 Clock signal descriptions

Signal name	Туре	Description	Ball location
RTC32K_CK	DI	RTC 32kHz clock input	N37
X26M_IN	AI	26 MHz clock input	AE34
		Output signal; control of PMIC 26 MHz / Buck / LDO normal mode or sleep	
SRCLKENA0	DO	High: Normal mode	L33
		Low: Sleep mode or low power mode	
SRCLKENA1	DO	Output signal; control of PMIC 26 MHz / Buck / LDO on or off	L34

7 Package Information

7.1 Thermal Specifications

7.1.1 Thermal Operating Specifications

Table 7-1 presents the thermal resistance characteristics and maximum operating temperatures of the device.

Symbol	Description	Value	Unit		
θ_{JA}	Package thermal resistances in natural convection	22.1	°C/Watt		
θ _{JB}	Package thermal resistances of junction-to-board	4.5	°C/Watt		
θ」	θ _{JC} Package thermal resistances of junction-to-case		°C/Watt		
TJ	Max. operating junction temperature	95	°C		

Table 7-1 MT8370 AV/AZA thermal operating specifications

Table 7-2 MT8370 IV/KZA thermal operating specifications

Symbol	Description	Value	Unit
θ _{JA}	Package thermal resistances in natural convection	21.9	°C/Watt
θ _{JB}	Package thermal resistances of junction-to-board	4.5	°C/Watt
θ」	Package thermal resistances of junction-to-case	0.82	°C/Watt
Τι	Max. operating junction temperature	105	°C

7.2 Top Marking

Figure 7-1 shows the device top marking definition.

Figure 7-1 Top marking

Table 7-2 presents the printed device reference and decoding.

Table 7-3 Printed device reference and decoding

	Parameter		Description
NNNNN#N	Part number	MT8370#V	Product family
#:	Function code 1	_	A for consumer-grade
#.	Function code 1	-	I for industrial-grade
YYWW	Date code	-	2-digits year and week code
&&&&&	Lot number	-	For internal use only
%	Function code 2		A: PKG θ _{JC} =2.89°C/W
70	Function code 2	-	K: PKG θ _{JC} =0.82°C/W
0	Pin one designator	-	Pin one location

7.3 Mechanical Drawing

The following figure shows printed device reference diagram (MFC VFBGA 15.0 mm × 15.0 mm, 1204-ball, 0.4 mm pitch package).

MEDIATEK

8 Legal and Support Information

8.1 Related Documents and Products

Documents:

- MMD (MediaTek Module Design)—Power Delivery Network (PDN) and DRAM design implementation solutions
- MT8370 Baseband Design Notice—Application note including schematic examples for peripheral interfaces such as GPIO, MSDC, SPI NOR, LPDDR4X, I2C/I3C, SPI, Display, Camera, USB, DPI, Ethernet, HDMI, PCIe, Audio, and power design implementation recommendations.
- MT6319 Application Note for MT8370—MediaTek MT6319 PMIC application note covering functional description and PCB layout guidelines.
- MT6365 Application Note for MT8370—MediaTek MT6365 PMIC application note covering functional description and PCB layout guidelines.
- MT6680 Application Note for MT8370—MediaTek MT6680 PMIC application note covering functional description and PCB layout guidelines.
- MA5721F Application Note for MT8370—MediaTek MA5721F PMIC application note covering functional description and PCB layout guidelines.

Companion chips:

- MT6319—Integrated Power Management IC (PMIC)
- MT6365—Integrated Power Management IC
- MT6680—Integrated Power Management IC
- MA5721F—Integrated Power Management IC

8.2 Trademarks

Arm, Jazelle, Cortex, TrustZone, AMBA, and Thumb are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Mali, CoreSight, Neon, and DynamIQ are trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Vulkan is a registered trademark of the Khronos Group, Inc.

PCIe is a registered trademark of PCI-SIG.

Cadence and Tensilica are registered trademarks of Cadence Design Systems, Inc.

HDMI is a trademark of HDMI Licensing, LLC.

I2C and I2S are trademarks of NXP Semiconductors.

OpenCL is a trademark of Apple, Inc.

SD is a registered trademark of SD Card Association.

MMC and eMMC are trademarks of MultiMediaCard Association.

MIPI and MIPI I3C are registered trademarks of MIPI Alliance, Inc.

DisplayPort is a trademark of VESA.

Linux is a registered trademark of Linus Torvalds.

Android is a trademark of Google LLC.

Intel is a registered trademark of Intel Corporation or its subsidiaries.

All other product or service names are the property of their respective owners.

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MEDIATEK DOES NOT ASSUME ANY RESPONSIBILITY ARISING OUT OF OR IN CONNECTION WITH ANY USE OF, OR RELIANCE ON, THIS DOCUMENT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING, WITHOUT LIMITATION, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MEDIATEK MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES MEDIATEK ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT, CIRCUIT OR SOFTWARE. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements. The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.